2 resultados para On-body communications
em Digital Commons - Michigan Tech
Resumo:
The relationship between obesity and heart rate variability (HRV) has been studied in adults and adolescents, but is not determined in young pediatrics. The purpose of this study was to assess autonomic activity using HRV in a pediatric population. We hypothesized that obese children would have reduced parasympathetic and increased sympathetic activity compared to age-matched subjects. 42 pediatric subjects (ages 3-5) were classified into 3 groups based on body mass index-for-age; normal, overweight and obese. HRV and respiratory rate were recorded during 3 minute baseline, 2 minute isometric handgrip and 3 minute recovery. HRV was analyzed in the time domain [heart rate (HR), RR interval (RRI) and RRI standard deviation (RRISD)] and frequency domain [low frequency (LF), high frequency (HF) and LF/HF ratio] using repeated measures ANOVA. Spearman’s correlations were used to examine the relations between BMI and HRV at rest. Significant condition effects were found between baseline, exercise and recovery, but these responses were not significantly different between the normal, overweight and obese children. BMI was negatively correlated with LF/HF, while BMI was positively correlated with RRISD, LF, HF and nHF. Our data demonstrate that higher BMI in the pediatric population is correlated with higher parasympathetic and lower sympathetic activity. These findings are contrary to HRV responses observed in adults and adolescents, suggesting complex relationships between age, obesity and autonomic control of the heart. The data supports the concept of an age reliance of HRV and a novel relationship between adiposity and body mass index in 3-5 year olds.
Resumo:
The Pierre Auger Cosmic Ray Observatory North site employs a large array of surface detector stations (tanks) to detect the secondary particle showers generated by ultra-high energy cosmic rays. Due to the rare nature of ultra-high energy cosmic rays, it is important to have a high reliability on tank communications, ensuring no valuable data is lost. The Auger North site employs a peer-to-peer paradigm, the Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN), designed specifically for highly reliable message delivery over fixed networks, under hard real-time deadlines. The WAHREN design included two retransmission protocols, Micro- and Macro- retransmission. To fully understand how each retransmission protocol increased the reliability of communications, this analysis evaluated the system without using either retransmission protocol (Case-0), both Micro- and Macro-retransmission individually (Micro and Macro), and Micro- and Macro-retransmission combined. This thesis used a multimodal modeling methodology to prove that a performance and reliability analysis of WAHREN was possible, and provided the results of the analysis. A multimodal approach was necessary because these processes were driven by different mathematical models. The results from this analysis can be used as a framework for making design decisions for the Auger North communication system.