1 resultado para Nozzles

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.