3 resultados para Nitrogen source

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research is about producing recombinant Trichoderma reesei endoglucanase Cel7B by using Kluyveromyces lactis, transformed with chromosomally integrated Cel7B cDNA, as a host cell (K. lactis Cel7B). Cel7B is one of the glycoside hydrolyze family of proteins that are produced by T. reesei. Cel7B together with other endoglucanases, exoglucanases, and â-glucosidases hydrolyze cellulose to glucose, which can then be fermented to biofuels or other value-added products. The research objective of this MS project is to examine favorable fermentation conditions for recombinant Cel7B enzyme production and improved activity. Production of enzyme on different types of media was examined, and the activity of the enzyme was measured by using different tools or procedures. The first condition tested for was using different concentrations of galactose as a carbon and energy source; however galactose also acts as a potent promoter of recombinant Cel7B expression in K. lactis Cel7B. The purpose of this method is to determine the relationship between production of enzyme with increasing sugar concentration. The second culture condition test was using different types of media: a complex medium-yeast extract, peptone, galactose (YPGal); a minimal medium-yeast nitrogen base (YNB) with galactose; and a minimal medium with supplement-yeast nitrogen base with casamino acid (YBC), a nitrogen source, with galactose. The third condition was using different types of reactors or fermenters: a small reactor (shake flask) and a larger automated bioreactor (BioFlo 3000 fermenter). The purpose of this method is to determine the quantity of the protein produced by using different environments of production. Different tools to determine the presence and activity of Cel7B enzyme were used. For the presence of enzyme, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used. Secondly, to detect enzyme activity, the carboxymethyl cellulose- 3,5-dinitrosalicylic acid (CMC- DNS) assay was employed. SDS-PAGE showed that the enzyme band was at 67 kDa, which is larger than native Cel7B (52 kDa.), likely due to over glycolylation during post-translational processing in K. lactis. For the different types of media used in our fermentation, recombinant Cel7B was produced from yeast extract peptone galactose (YPGal), and yeast nitrogen base with casamino acid (YBC), but was not produced and no activity was detected from yeast nitrogen base (YNB). This experiment concluded that the Cel7B production requires the amino acid resources as part of fermentation medium. In experiments where recombinant Cel7B net activity was measured at 1% galactose initial concentration in YPGal and YBC media, higher enzyme activity was detected for the complex medium YPGal. Higher activity of recombinant Cel7B was detected for flask culture in 2% galactose compared to 1% galactose for YBC medium. Two bioreactor experiments were conducted under these culture conditions at 30°C, pH 7.0, dissolved oxygen of 50% of saturation, and 250 rpm agitation (variable depending on DO control) K. lactis-Cel7B yeast growth curves were quite reproducible with maximum optical density (O.D) at 600 nm of between 7 and 8 (when factoring dilution of 10:1). Galactose was consumed rapidly during the first 15 hours of bioreactor culture and recombinant Cel7B started to appear in the culture at 10-15 hours and increased thereafter up to a maximum of between 0.9 and 1.6 mg/mL/hr in these experiments. These bioreactor enzyme activity results are much higher than comparable experiments conducted with flask-scale culture (0.5 mg/mL/hr). In order to achieve the highest recombinant Cel7B activity from batch culture of K. lactis-Cel7B, based on this research it is best to use a complex medium, 2% initial galactose concentration, and an automated bioreactor where good control of temperature, pH, and dissolved oxygen can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen oxides play a crucial role in the budget of tropospheric ozone (O sub(3)) and the formation of the hydroxyl radical. Anthropogenic activities and boreal wildfires are large sources of emissions in the atmosphere. However, the influence of the transport of these emissions on nitrogen oxides and O sub(3) levels at hemispheric scales is not well understood, in particular due to a lack of nitrogen oxides measurements in remote regions. In order to address these deficiencies, measurements of NO, NO sub(2) and NO sub(y) (total reactive nitrogen oxides) were made in the lower free troposphere (FT) over the central North Atlantic region (Pico Mountain station, 38 degree N 28 degree W, 2.3 km asl) from July 2002 to August 2005. These measurements reveal a well-defined seasonal cycle of nitrogen oxides (NO sub(x) = NO+NO sub(2) and NO sub(y)) in the background central North Atlantic lower FT, with higher mixing ratios during the summertime. Observed NO sub(x) and NO sub(y) levels are consistent with long-range transport of emissions, but with significant removal en-route to the measurement site. Reactive nitrogen largely exists in the form of PAN and HNO sub(3) ( similar to 80-90% of NO sub(y)) all year round. A shift in the composition of NO sub(y) from dominance of PAN to dominance of HNO sub(3) occurs from winter-spring to summer-fall, as a result of changes in temperature and photochemistry over the region. Analysis of the long-range transport of boreal wildfire emissions on nitrogen oxides provides evidence of the very large-scale impacts of boreal wildfires on the tropospheric NO sub(x) and O sub(3) budgets. Boreal wildfire emissions are responsible for significant shifts in the nitrogen oxides distributions toward higher levels during the summer, with medians of NO sub(y) (117-175 pptv) and NO sub(x) (9-30 pptv) greater in the presence of boreal wildfire emissions. Extreme levels of NO sub(x) (up to 150 pptv) and NO sub(y) (up to 1100 pptv) observed in boreal wildfire plumes suggest that decomposition of PAN to NO sub(x) is a significant source of NO sub(x), and imply that O sub(3) formation occurs during transport. Ozone levels are also significantly enhanced in boreal wildfire plumes. However, a complex behavior of O sub(3) is observed in the plumes, which varies from significant to lower O sub(3) production to O sub(3) destruction. Long-range transport of anthropogenic emissions from North America also has a significant influence on the regional NO sub(x) and O sub(3) budgets. Transport of pollution from North America causes significant enhancements on nitrogen oxides year-round. Enhancements of CO, NO sub(y) and NO sub(x) indicate that, consistent with previous studies, more than 95% of the NO sub(x) emitted over the U.S. is removed before and during export out of the U.S. boundary layer. However, about 30% of the NO sub(x) emissions exported out of the U.S. boundary layer remain in the airmasses. Since the lifetime of NO sub(x) is shorter than the transport timescale, PAN decomposition and potentially photolysis of HNO sub(3) provide a supply of NO sub(x) over the central North Atlantic lower FT. Observed Delta O sub(3)/ Delta NO sub(y) and large NO sub(y) levels remaining in the North American plumes suggest potential O sub(3) formation well downwind from North America. Finally, a comparison of the nitrogen oxides measurements with results from the global chemical transport (GCT) model GEOS-Chem identifies differences between the observations and the model. GEOS-Chem reproduces the seasonal variation of nitrogen oxides over the central North Atlantic lower FT, but does not capture the magnitude of the cycles. Improvements in our understanding of nitrogen oxides chemistry in the remote FT and emission sources are necessary for the current GCT models to adequately estimate the impacts of emissions on tropospheric NO sub(x) and the resulting impacts on the O sub(3) budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nutrient uptake response of ectomycorrhizal fungi (ECM) to different nutrient substrates is a driving force in ecosystem nutrient cycling. We hypothesized that taxa from low nitrogen (N) soils would be more likely to use organic N compared to taxa from high N soils, and that taxa from high N would be more likely to use organic phosphorus (P) sources when compared to the ECM dominant in low N soils. This study focuses on the growth response of ECM species collected over a N gradient to different forms of N and P nutrient substrates and whether ECM growth in a particular nutrient source can be related to how the ECM fungi have responded to elevated N in the field. This study found a mixed ECM response to organic and inorganic N and P treatments. High affinity N taxa expected to respond positively to inorganic N produced the phosphatase enzyme to take up organic phosphorus, but not all low affinity N taxa expected to negatively respond to organic P produced the protease enzyme to take up organic N. Interspecific variability was displayed by some high and low affinity N taxa responded and ECM intraspecific variability in response to N and P treatments was also noted. Future analysis of may show more evident ECM response patterns to inorganic and organic forms of N and P.