4 resultados para Newtonian fluids
em Digital Commons - Michigan Tech
Resumo:
Computational models for the investigation of flows in deformable tubes are developed and implemented in the open source computing environment OpenFOAM. Various simulations for Newtonian and non-Newtonian fluids under various flow conditions are carried out and analyzed. First, simulations are performed to investigate the flow of a shear-thinning, non-Newtonian fluid in a collapsed elastic tube and comparisons are made with experimental data. The fluid is modeled by means of the Bird-Carreau viscosity law. The computational domain of the deformed tube is constructed from data obtained via computer tomography imaging. Comparison of the computed velocity fields with the ultrasound Doppler velocity profile measurements show good agreement, as does the adjusted pressure drop along the tube's axis. Analysis of the shear rates show that the shear-thinning effect of the fluid becomes relevant in the cross-sections with the biggest deformation. The peristaltic motion is simulated by means of upper and lower rollers squeezing the fluid along a tube. Two frames of reference are considered. In the moving frame the computational domain is fixed and the coordinate system is moving with the roller speed, and in the fixed frame the roller is represented by a deforming mesh. Several two-dimensional simulations are carried out for Newtonian and non-Newtonian fluids. The effect of the shear-thinning behavior of the fluid on the transport efficiency is examined. In addition, the influence of the roller speed and the gap width between the rollers on the xxvii transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented. In addition, the influence of the roller speed and the gap width between the rollers on the transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented.
Resumo:
The primary goal of this project is to demonstrate the practical use of data mining algorithms to cluster a solved steady-state computational fluids simulation (CFD) flow domain into a simplified lumped-parameter network. A commercial-quality code, “cfdMine” was created using a volume-weighted k-means clustering that that can accomplish the clustering of a 20 million cell CFD domain on a single CPU in several hours or less. Additionally agglomeration and k-means Mahalanobis were added as optional post-processing steps to further enhance the separation of the clusters. The resultant nodal network is considered a reduced-order model and can be solved transiently at a very minimal computational cost. The reduced order network is then instantiated in the commercial thermal solver MuSES to perform transient conjugate heat transfer using convection predicted using a lumped network (based on steady-state CFD). When inserting the lumped nodal network into a MuSES model, the potential for developing a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track temperatures near specific objects (such as equipment in vehicles).
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.
Resumo:
This study explores the effects of modeling instruction on student learning in physics. Multiple representations grounded in physical contexts were employed by students to analyze the results of inquiry lab investigations. Class whiteboard discussions geared toward a class consensus following Socratic dialogue were implemented throughout the modeling cycle. Lab investigations designed to address student preconceptions related to Newton’s Third Law were implemented. Student achievement was measured based on normalized gains on the Force Concept Inventory. Normalized FCI gains achieved by students in this study were comparable to those achieved by students of other novice modelers. Physics students who had taken a modeling Intro to Physics course scored significantly higher on the FCI posttest than those who had not. The FCI results also provided insight into deeply rooted student preconceptions related to Newton’s Third Law. Implications for instruction and the design of lab investigations related to Newton’s Third Law are discussed.