7 resultados para New technology informational
em Digital Commons - Michigan Tech
Resumo:
Traditionally, asphalt mixtures were produced at high temperatures (between 150°C to 180°C) and therefore often referred to as Hot Mix Asphalt (HMA). Recently, a new technology named Warm Mix Asphalt (WMA) was developed in Europe that allows HMA to be produced at a lower temperature. Over years of research efforts, a few WMA technologies were introduced including the foaming method using Aspha-min® and Advera® WMA; organic additives such as Sasobit® and Asphaltan B®; and chemical packages such as Evotherm® and Cecabase RT®. Benefits were found when lower temperatures were used to produce asphalt mixtures, especially when it comes to environmental and energy savings. Even though WMA has shown promising results in energy savings and emission reduction, however, only limited studies and laboratory tests have been conducted to date. The objectives of this project are to 1) develop a mix design framework for WMA by evaluating its mechanical properties; 2) evaluate performance of WMA containing high percentages of recycled asphalt material; and 3) evaluate the moisture sensitivity in WMA. The test results show that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. A recommended WMA mix design framework was developed as well. The WMA design framework was presented in this study to provide contractors, and government agencies successfully design WMA. Mixtures containing high RAP and RAS were studied as well and the overall results show that WMA technology allows the mixture containing high RAP content and RAS to be produced at lower temperature (up to 35°C lower) without significantly affect the performance of asphalt mixture in terms of rutting, fatigue and moisture susceptibility. Lastly, the study also found that by introducing the hydrated lime in the WMA, all mixtures modified by the hydrated lime passed the minimum requirement of 0.80. This indicated that, the moisture susceptibility of the WMA can be improved by adding the hydrated lime.
Resumo:
The challenges posed by global climate change are motivating the investigation of strategies that can reduce the life cycle greenhouse gas (GHG) emissions of products and processes. While new construction materials and technologies have received significant attention, there has been limited emphasis on understanding how construction processes can be best managed to reduce GHG emissions. Unexpected disruptive events tend to adversely impact construction costs and delay project completion. They also tend to increase project GHG emissions. The objective of this paper is to investigate ways in which project GHG emissions can be reduced by appropriate management of disruptive events. First, an empirical analysis of construction data from a specific highway construction project is used to illustrate the impact of unexpected schedule delays in increasing project GHG emissions. Next, a simulation based methodology is described to assess the effectiveness of alternative project management strategies in reducing GHG emissions. The contribution of this paper is that it explicitly considers projects emissions, in addition to cost and project duration, in developing project management strategies. Practical application of the method discussed in this paper will help construction firms reduce their project emissions through strategic project management, and without significant investment in new technology. In effect, this paper lays the foundation for best practices in construction management that will optimize project cost and duration, while minimizing GHG emissions.
Resumo:
Information management is a key aspect of successful construction projects. Having inaccurate measurements and conflicting data can lead to costly mistakes, and vague quantities can ruin estimates and schedules. Building information modeling (BIM) augments a 3D model with a wide variety of information, which reduces many sources of error and can detect conflicts before they occur. Because new technology is often more complex, it can be difficult to effectively integrate it with existing business practices. In this paper, we will answer two questions: How can BIM add value to construction projects? and What lessons can be learned from other companies that use BIM or other similar technology? Previous research focused on the technology as if it were simply a tool, observing problems that occurred while integrating new technology into existing practices. Our research instead looks at the flow of information through a company and its network, seeing all the actors as part of an ecosystem. Building upon this idea, we proposed the metaphor of an information supply chain to illustrate how BIM can add value to a construction project. This paper then concludes with two case studies. The first case study illustrates a failure in the flow of information that could have prevented by using BIM. The second case study profiles a leading design firm that has used BIM products for many years and shows the real benefits of using this program.
Resumo:
Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.
Resumo:
Large quantities of pure synthetic oligodeoxynucleotides (ODNs) are important for preclinical research, drug development, and biological studies. These ODNs are synthesized on an automated synthesizer. It is inevitable that the crude ODN product contains failure sequences which are not easily removed because they have the same properties as the full length ODNs. Current ODN purification methods such as polyacrylamide gel electrophoresis (PAGE), reversed-phase high performance liquid chromatography (RP HPLC), anion exchange HPLC, and affinity purification can remove those impurities. However, they are not suitable for large scale purification due to the expensive aspects associated with instrumentation, solvent demand, and high labor costs. To solve these problems, two non-chromatographic ODN purification methods have been developed. In the first method, the full-length ODN was tagged with the phosphoramidite containing a methacrylamide group and a cleavable linker while the failure sequences were not. The full-length ODN was incorporated into a polymer through radical acrylamide polymerization whereas failure sequences and other impurities were removed by washing. Pure full-length ODN was obtained by cleaving it from the polymer. In the second method, the failure sequences were capped by a methacrylated phosphoramidite in each synthetic cycle. During purification, the failure sequences were separated from the full-length ODN by radical acrylamide polymerization. The full-length ODN was obtained via water extraction. For both methods, excellent purification yields were achieved and the purity of ODNs was very satisfactory. Thus, this new technology is expected to be beneficial for large scale ODN purification.
Resumo:
Oligodeoxynucleotides (ODNs) containing latent electrophilic groups can be highly useful in antisense drug development and many other applications such as chemical biology and medicine, where covalent cross-linking of ODNs with mRNA, protein and ODN is required. However, such ODN analogues cannot be synthesized using traditional technologies due to the strongly nucleophilic conditions used in traditional deprotection/cleavage process. To solve this long lasting and highly challenging problem in nucleic acid chemistry, I used the 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) function to protect the exo-amino groups on the nucleobases dA, dC and dG, and to design the linker between the nascent ODN and solid support. These protecting groups and linker are completely stable under all ODN synthesis conditions, but can be readily cleaved under non-nucleophilic and nearly neutral conditions. As a result, the new ODN synthesis technology is universally useful for the synthesis of electrophilic ODNs. The dissertation is mainly comprised of two portions. In the first portion, the development of the Dmoc-based linker for ODN synthesis will be described. The construction of the dT-Dmoc-linker required a total of seven steps to synthesize. The linker was then anchored to the solid support―controlled pore glass (CPG). In the second portion, the syntheses of Dmoc-protected phosphoramidites ODN synthesis monomers including Dmoc-dC-amidite, Dmoc-dA-amidite, Dmoc-dG-amidite are described. The protection of dC and dA with 1,3-dithian-2-yl-methyl 4-nitrophenyl carbonate proceeded smoothly giving Dmoc-dC and Dmoc-dA in good yields. However, when the same acylation procedure was applied for the synthesis of Dmoc-dG, very low yield was obtained. This problem was later solved using a highly innovative and environmentally benign procedure, which is expected to be widely useful for the acylation of the exo-amino groups on nucleoside bases. The reactions to convert the Dmoc-protected nucleosides to phosphoramidite monomers proceeded smoothly with high yields. Using the Dmoc phosphoramidite monomers dA, dC, dG and the commercially available dT, and the Dmoc linker, four ODN sequences were synthesized. In all cases, excellent coupling yields were obtained. ODN deprotection/cleavage was achieved by using non-nucleophilic oxidative conditions. The new technology is predicted to be universally useful for the synthesis of ODNs containing one or more electrophilic functionalities.
Resumo:
Analyzing large-scale gene expression data is a labor-intensive and time-consuming process. To make data analysis easier, we developed a set of pipelines for rapid processing and analysis poplar gene expression data for knowledge discovery. Of all pipelines developed, differentially expressed genes (DEGs) pipeline is the one designed to identify biologically important genes that are differentially expressed in one of multiple time points for conditions. Pathway analysis pipeline was designed to identify the differentially expression metabolic pathways. Protein domain enrichment pipeline can identify the enriched protein domains present in the DEGs. Finally, Gene Ontology (GO) enrichment analysis pipeline was developed to identify the enriched GO terms in the DEGs. Our pipeline tools can analyze both microarray gene data and high-throughput gene data. These two types of data are obtained by two different technologies. A microarray technology is to measure gene expression levels via microarray chips, a collection of microscopic DNA spots attached to a solid (glass) surface, whereas high throughput sequencing, also called as the next-generation sequencing, is a new technology to measure gene expression levels by directly sequencing mRNAs, and obtaining each mRNA’s copy numbers in cells or tissues. We also developed a web portal (http://sys.bio.mtu.edu/) to make all pipelines available to public to facilitate users to analyze their gene expression data. In addition to the analyses mentioned above, it can also perform GO hierarchy analysis, i.e. construct GO trees using a list of GO terms as an input.