2 resultados para Negative frequency-dependent selection
em Digital Commons - Michigan Tech
Resumo:
Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.
Resumo:
Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.