8 resultados para Multi-Point Method
em Digital Commons - Michigan Tech
Resumo:
The amount and type of ground cover is an important characteristic to measure when collecting soil disturbance monitoring data after a timber harvest. Estimates of ground cover and bare soil can be used for tracking changes in invasive species, plant growth and regeneration, woody debris loadings, and the risk of surface water runoff and soil erosion. A new method of assessing ground cover and soil disturbance was recently published by the U.S. Forest Service, the Forest Soil Disturbance Monitoring Protocol (FSDMP). This protocol uses the frequency of cover types in small circular (15cm) plots to compare ground surface in pre- and post-harvest condition. While both frequency and percent cover are common methods of describing vegetation, frequency has rarely been used to measure ground surface cover. In this study, three methods for assessing ground cover percent (step-point, 15cm dia. circular and 1x5m visual plot estimates) were compared to the FSDMP frequency method. Results show that the FSDMP method provides significantly higher estimates of ground surface condition for most soil cover types, except coarse wood. The three cover methods had similar estimates for most cover values. The FSDMP method also produced the highest value when bare soil estimates were used to model erosion risk. In a person-hour analysis, estimating ground cover percent in 15cm dia. plots required the least sampling time, and provided standard errors similar to the other cover estimates even at low sampling intensities (n=18). If ground cover estimates are desired in soil monitoring, then a small plot size (15cm dia. circle), or a step-point method can provide a more accurate estimate in less time than the current FSDMP method.
Resumo:
In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.
Resumo:
This dissertation investigates high performance cooperative localization in wireless environments based on multi-node time-of-arrival (TOA) and direction-of-arrival (DOA) estimations in line-of-sight (LOS) and non-LOS (NLOS) scenarios. Here, two categories of nodes are assumed: base nodes (BNs) and target nodes (TNs). BNs are equipped with antenna arrays and capable of estimating TOA (range) and DOA (angle). TNs are equipped with Omni-directional antennas and communicate with BNs to allow BNs to localize TNs; thus, the proposed localization is maintained by BNs and TNs cooperation. First, a LOS localization method is proposed, which is based on semi-distributed multi-node TOA-DOA fusion. The proposed technique is applicable to mobile ad-hoc networks (MANETs). We assume LOS is available between BNs and TNs. One BN is selected as the reference BN, and other nodes are localized in the coordinates of the reference BN. Each BN can localize TNs located in its coverage area independently. In addition, a TN might be localized by multiple BNs. High performance localization is attainable via multi-node TOA-DOA fusion. The complexity of the semi-distributed multi-node TOA-DOA fusion is low because the total computational load is distributed across all BNs. To evaluate the localization accuracy of the proposed method, we compare the proposed method with global positioning system (GPS) aided TOA (DOA) fusion, which are applicable to MANETs. The comparison criterion is the localization circular error probability (CEP). The results confirm that the proposed method is suitable for moderate scale MANETs, while GPS-aided TOA fusion is suitable for large scale MANETs. Usually, TOA and DOA of TNs are periodically estimated by BNs. Thus, Kalman filter (KF) is integrated with multi-node TOA-DOA fusion to further improve its performance. The integration of KF and multi-node TOA-DOA fusion is compared with extended-KF (EKF) when it is applied to multiple TOA-DOA estimations made by multiple BNs. The comparison depicts that it is stable (no divergence takes place) and its accuracy is slightly lower than that of the EKF, if the EKF converges. However, the EKF may diverge while the integration of KF and multi-node TOA-DOA fusion does not; thus, the reliability of the proposed method is higher. In addition, the computational complexity of the integration of KF and multi-node TOA-DOA fusion is much lower than that of EKF. In wireless environments, LOS might be obstructed. This degrades the localization reliability. Antenna arrays installed at each BN is incorporated to allow each BN to identify NLOS scenarios independently. Here, a single BN measures the phase difference across two antenna elements using a synchronized bi-receiver system, and maps it into wireless channel’s K-factor. The larger K is, the more likely the channel would be a LOS one. Next, the K-factor is incorporated to identify NLOS scenarios. The performance of this system is characterized in terms of probability of LOS and NLOS identification. The latency of the method is small. Finally, a multi-node NLOS identification and localization method is proposed to improve localization reliability. In this case, multiple BNs engage in the process of NLOS identification, shared reflectors determination and localization, and NLOS TN localization. In NLOS scenarios, when there are three or more shared reflectors, those reflectors are localized via DOA fusion, and then a TN is localized via TOA fusion based on the localization of shared reflectors.
Resumo:
Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.
Resumo:
Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.
Resumo:
Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.
Resumo:
Disturbances in power systems may lead to electromagnetic transient oscillations due to mismatch of mechanical input power and electrical output power. Out-of-step conditions in power system are common after the disturbances where the continuous oscillations do not damp out and the system becomes unstable. Existing out-of-step detection methods are system specific as extensive off-line studies are required for setting of relays. Most of the existing algorithms also require network reduction techniques to apply in multi-machine power systems. To overcome these issues, this research applies Phasor Measurement Unit (PMU) data and Zubov’s approximation stability boundary method, which is a modification of Lyapunov’s direct method, to develop a novel out-of-step detection algorithm. The proposed out-of-step detection algorithm is tested in a Single Machine Infinite Bus system, IEEE 3-machine 9-bus, and IEEE 10-machine 39-bus systems. Simulation results show that the proposed algorithm is capable of detecting out-of-step conditions in multi-machine power systems without using network reduction techniques and a comparative study with an existing blinder method demonstrate that the decision times are faster. The simulation case studies also demonstrate that the proposed algorithm does not depend on power system parameters, hence it avoids the need of extensive off-line system studies as needed in other algorithms.
Resumo:
All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions.