4 resultados para Mountain flying

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The people of the southwestern Rhodope Mountains of Bulgaria live in small, mountainous villages and rural areas. They rely on berries, herbs, and mushrooms provided by the forest and maintain a lifestyle and culture of gathering them. This study determined the economic and landscape concentration of Non-Timber Forest Products (NTFPs) and how this has changed in the past twenty years in the region of Garmen. The objective was to gauge the cultural and economic significance of NTFPs in the lives of the people who live there. Data was collected using informal, open-ended interviews and through participant observation. Results indicate that ethnicity influence how resources are utilized. Roma people collect mushrooms for income generation; Orthodox Bulgarians gather herbs, berries, and mushrooms for medicinal purposes, to supplement their diets, and to carry on traditions. Bulgarian Muslims collect for a combination of the aforementioned reasons. Changes that occur in the forests affect each of the ethnic groups in different ways and forest management practices should include people’s knowledge and uses of NTFPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-hierarchical K-means algorithm is used to cluster 47 years (1960–2006) of 10-day HYSPLIT backward trajectories to the Pico Mountain (PM) observatory on a seasonal basis. The resulting cluster centers identify the major transport pathways and collectively comprise a long-term climatology of transport to the observatory. The transport climatology improves our ability to interpret the observations made there and our understanding of pollution source regions to the station and the central North Atlantic region. I determine which pathways dominate transport to the observatory and examine the impacts of these transport patterns on the O3, NOy, NOx, and CO measurements made there during 2001–2006. Transport from the U.S., Canada, and the Atlantic most frequently reaches the station, but Europe, east Africa, and the Pacific can also contribute significantly depending on the season. Transport from Canada was correlated with the North Atlantic Oscillation (NAO) in spring and winter, and transport from the Pacific was uncorrelated with the NAO. The highest CO and O3 are observed during spring. Summer is also characterized by high CO and O3 and the highest NOy and NOx of any season. Previous studies at the station attributed the summer time high CO and O3 to transport of boreal wildfire emissions (for 2002–2004), and boreal fires continued to affect the station during 2005 and 2006. The particle dispersion model FLEXPART was used to calculate anthropogenic and biomass-burning CO tracer values at the station in an attempt to identify the regions responsible for the high CO and O3 observations during spring and biomass-burning impacts in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due tp the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method’s error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.