2 resultados para Moibanus, Ambrosius, 1494-1554.

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many complex and dynamic domains, the ability to generate and then select the appropriate course of action is based on the decision maker's "reading" of the situation--in other words, their ability to assess the situation and predict how it will evolve over the next few seconds. Current theories regarding option generation during the situation assessment and response phases of decision making offer contrasting views on the cognitive mechanisms that support superior performance. The Recognition-Primed Decision-making model (RPD; Klein, 1989) and Take-The-First heuristic (TTF; Johnson & Raab, 2003) suggest that superior decisions are made by generating few options, and then selecting the first option as the final one. Long-Term Working Memory theory (LTWM; Ericsson & Kintsch, 1995), on the other hand, posits that skilled decision makers construct rich, detailed situation models, and that as a result, skilled performers should have the ability to generate more of the available task-relevant options. The main goal of this dissertation was to use these theories about option generation as a way to further the understanding of how police officers anticipate a perpetrator's actions, and make decisions about how to respond, during dynamic law enforcement situations. An additional goal was to gather information that can be used, in the future, to design training based on the anticipation skills, decision strategies, and processes of experienced officers. Two studies were conducted to achieve these goals. Study 1 identified video-based law enforcement scenarios that could be used to discriminate between experienced and less-experienced police officers, in terms of their ability to anticipate the outcome. The discriminating scenarios were used as the stimuli in Study 2; 23 experienced and 26 less-experienced police officers observed temporally-occluded versions of the scenarios, and then completed assessment and response option-generation tasks. The results provided mixed support for the nature of option generation in these situations. Consistent with RPD and TTF, participants typically selected the first-generated option as their final one, and did so during both the assessment and response phases of decision making. Consistent with LTWM theory, participants--regardless of experience level--generated more task-relevant assessment options than task-irrelevant options. However, an expected interaction between experience level and option-relevance was not observed. Collectively, the two studies provide a deeper understanding of how police officers make decisions in dynamic situations. The methods developed and employed in the studies can be used to investigate anticipation and decision making in other critical domains (e.g., nursing, military). The results are discussed in relation to how they can inform future studies of option-generation performance, and how they could be applied to develop training for law enforcement officers.