2 resultados para Mixed-Methods
em Digital Commons - Michigan Tech
Resumo:
The fields of Rhetoric and Communication usually assume a competent speaker who is able to speak well with conscious intent; however, what happens when intent and comprehension are intact but communicative facilities are impaired (e.g., by stroke or traumatic brain injury)? What might a focus on communicative success be able to tell us in those instances? This project considers this question in examining communication disorders through identifying and analyzing patterns of (dis) fluent speech between 10 aphasic and 10 non-aphasic adults. The analysis in this report is centered on a collection of data provided by the Aphasia Bank database. The database’s collection protocol guides aphasic and non-aphasic participants through a series of language assessments, and for my re-analysis of the database’s transcripts I consider communicative success is and how it is demonstrated during a re-telling of the Cinderella narrative. I conducted a thorough examination of a set of participant transcripts to understand the contexts in which speech errors occur, and how (dis) fluencies may follow from aphasic and non-aphasic participant’s speech patterns. An inductive mixed-methods approach, informed by grounded theory, qualitative, and linguistic analyses of the transcripts functioned as a means to balance the classification of data, providing a foundation for all sampling decisions. A close examination of the transcripts and the codes of the Aphasia Bank database suggest that while the coding is abundant and detailed, that further levels of coding and analysis may be needed to reveal underlying similarities and differences in aphasic vs. non-aphasic linguistic behavior. Through four successive levels of increasingly detailed analysis, I found that patterns of repair by aphasics and non-aphasics differed primarily in degree rather than kind. This finding may have therapeutic impact, in reassuring aphasics that they are on the right track to achieving communicative fluency.
Resumo:
Waste effluents from the forest products industry are sources of lignocellulosic biomass that can be converted to ethanol by yeast after pretreatment. However, the challenge of improving ethanol yields from a mixed pentose and hexose fermentation of a potentially inhibitory hydrolysate still remains. Hardboard manufacturing process wastewater (HPW) was evaluated at a potential feedstream for lignocellulosic ethanol production by native xylose-fermenting yeast. After screening of xylose-fermenting yeasts, Scheffersomyces stipitis CBS 6054 was selected as the ideal organism for conversion of the HPW hydrolysate material. The individual and synergistic effects of inhibitory compounds present in the hydrolysate were evaluated using response surface methodology. It was concluded that organic acids have an additive negative effect on fermentations. Fermentation conditions were also optimized in terms of aeration and pH. Methods for improving productivity and achieving higher ethanol yields were investigated. Adaptation to the conditions present in the hydrolysate through repeated cell sub-culturing was used. The objectives of this present study were to adapt S. stipitis CBS6054 to a dilute-acid pretreated lignocellulosic containing waste stream; compare the physiological, metabolic, and proteomic profiles of the adapted strain to its parent; quantify changes in protein expression/regulation, metabolite abundance, and enzyme activity; and determine the biochemical and molecular mechanism of adaptation. The adapted culture showed improvement in both substrate utilization and ethanol yields compared to the unadapted parent strain. The adapted strain also represented a growth phenotype compared to its unadapted parent based on its physiological and proteomic profiles. Several potential targets that could be responsible for strain improvement were identified. These targets could have implications for metabolic engineering of strains for improved ethanol production from lignocellulosic feedstocks. Although this work focuses specifically on the conversion of HPW to ethanol, the methods developed can be used for any feedstock/product systems that employ a microbial conversion step. The benefit of this research is that the organisms will the optimized for a company's specific system.