3 resultados para Mixed Stands
em Digital Commons - Michigan Tech
Resumo:
Most research on carbon content of trees has focused on temperate tree species with little information existing on the carbon content of tropical tree species. This study investigated the variation in carbon content of selected tropical tree species and compared carbon content of Khaya spp from two ecozones in Ghana. Allometric equations developed for mixed-plantation stands for wet evergreen forest verified the expected strong relationship between tree volumes and dbh (r2>0.93) and volume and dbh2×height (r2>0.97). Carbon concentration, wood density and carbon content differed significantly among species. Volume at age 12 ranged from 0.01 to 1.04 m3 per tree, and wood density was highly variable among species, ranging from 0.27 to 0.76 g cm-3. This suggests that species specific density data is critical for accurate conversion of volumes derived from allometric relationships into carbon contents. Significant differences in density of Khaya spp existed between the wet and moist semi-deciduous ecozones. The baseline species-level information from this study will be useful for carbon accounting and development of carbon sequestration strategies in Ghana and other tropical African countries.
Resumo:
Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.
Resumo:
Smallholders in eastern Paraguay plant small stands of Eucalyptus grandis W. Hill ex Maiden intended for sale on the local market. Smallholders have been encouraged to plant E. grandis by local forestry extension agents who offer both forestry education and incentive programs. Smallholders who practice recommended forestry techniques geared towards growing large diameter trees of good form are financially rewarded by the local markets which desire saw log quality trees. The question was posed, are smallholders engaging in recommended silvicultural practices and producing reasonable volume yields? It was hypothesized that smallholders, having received forestry education and having financial incentives from the local market, would engage in silvicultural practices resulting in trees of good form and volume yields that were reasonable for the local climate and soil characteristics. Yield volume results from this study support this hypothesis. Mean volume yield was estimated at 70 cubic meters per hectare at age four and 225 cubic meters per hectare at age eight. These volume yields compare favorably to volume yields from other studies of E. grandis grown in similar climates, with similar stocking levels and site qualities.