1 resultado para Missing data
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (14)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (11)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (11)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (557)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- Scielo España (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (18)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
DIMENSION REDUCTION FOR POWER SYSTEM MODELING USING PCA METHODS CONSIDERING INCOMPLETE DATA READINGS
Resumo:
Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.