4 resultados para Minamoto, Yoshitomo, 1123-1160

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research on carbon content of trees has focused on temperate tree species with little information existing on the carbon content of tropical tree species. This study investigated the variation in carbon content of selected tropical tree species and compared carbon content of Khaya spp from two ecozones in Ghana. Allometric equations developed for mixed-plantation stands for wet evergreen forest verified the expected strong relationship between tree volumes and dbh (r2>0.93) and volume and dbh2×height (r2>0.97). Carbon concentration, wood density and carbon content differed significantly among species. Volume at age 12 ranged from 0.01 to 1.04 m3 per tree, and wood density was highly variable among species, ranging from 0.27 to 0.76 g cm-3. This suggests that species specific density data is critical for accurate conversion of volumes derived from allometric relationships into carbon contents. Significant differences in density of Khaya spp existed between the wet and moist semi-deciduous ecozones. The baseline species-level information from this study will be useful for carbon accounting and development of carbon sequestration strategies in Ghana and other tropical African countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was conducted to determine the effects of different variables on the perception of vehicle speeds in a driving simulator. The motivations of the study include validation of the Michigan Technological University Human Factors and Systems Lab driving simulator, obtaining a better understanding of what influences speed perception in a virtual environment, and how to improve speed perception in future simulations involving driver performance measures. Using a fixed base driving simulator, two experiments were conducted, the first to evaluate the effects of subject gender, roadway orientation, field of view, barriers along the roadway, opposing traffic speed, and subject speed judgment strategies on speed estimation, and the second to evaluate all of these variables as well as feedback training through use of the speedometer during a practice run. A mixed procedure model (mixed model ANOVA) in SAS® 9.2 was used to determine the significance of these variables in relation to subject speed estimates, as there were both between and within subject variables analyzed. It was found that subject gender, roadway orientation, feedback training, and the type of judgment strategy all significantly affect speed perception. By using curved roadways, feedback training, and speed judgment strategies including road lines, speed limit experience, and feedback training, speed perception in a driving simulator was found to be significantly improved.