3 resultados para Millionaire Problem, Efficiency, Verifiability, Zero Test, Batch Equation
em Digital Commons - Michigan Tech
Resumo:
To estimate a parameter in an elliptic boundary value problem, the method of equation error chooses the value that minimizes the error in the PDE and boundary condition (the solution of the BVP having been replaced by a measurement). The estimated parameter converges to the exact value as the measured data converge to the exact value, provided Tikhonov regularization is used to control the instability inherent in the problem. The error in the estimated solution can be bounded in an appropriate quotient norm; estimates can be derived for both the underlying (infinite-dimensional) problem and a finite-element discretization that can be implemented in a practical algorithm. Numerical experiments demonstrate the efficacy and limitations of the method.
Resumo:
The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.
Resumo:
KIVA is a FORTRAN code developed by Los Alamos national lab to simulate complete engine cycle. KIVA is a flow solver code which is used to perform calculation of properties in a fluid flow field. It involves using various numerical schemes and methods to solve the Navier-Stokes equation. This project involves improving the accuracy of one such scheme by upgrading it to a higher order scheme. The numerical scheme to be modified is used in the critical final stage calculation called as rezoning phase. The primitive objective of this project is to implement a higher order numerical scheme, to validate and verify that the new scheme is better than the existing scheme. The latest version of the KIVA family (KIVA 4) is used for implementing the higher order scheme to support handling the unstructured mesh. The code is validated using the traditional shock tube problem and the results are verified to be more accurate than the existing schemes in reference with the analytical result. The convection test is performed to compare the computational accuracy on convective transfer; it is found that the new scheme has less numerical diffusion compared to the existing schemes. A four valve pentroof engine, an example case of KIVA package is used as application to ensure the stability of the scheme in practical application. The results are compared for the temperature profile. In spite of all the positive results, the numerical scheme implemented has a downside of consuming more CPU time for the computational analysis. The detailed comparison is provided. However, in an overview, the implementation of the higher order scheme in the latest code KIVA 4 is verified to be successful and it gives better results than the existing scheme which satisfies the objective of this project.