5 resultados para Mean squared error
em Digital Commons - Michigan Tech
Resumo:
Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction methods to compensate turbulence effects. While many image reconstruction methods have been proposed, their suitability for use in man-portable embedded systems is uncertain. To be effective, these systems must operate over significant variations in turbulence conditions while subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods have recently been proposed as being well suited for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. Design parameters are selected by parametric evaluation of system performance as factors external to the system are varied. The precise control necessary for such an evaluation is made possible using image sets of turbulence degraded imagery developed using a novel technique for simulating anisoplanatic image formation over long horizontal paths. System performance is statistically evaluated over multiple reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In addition to more general design parameters, the relative performance the bispectrum and the Knox-Thompson phase recovery methods is also compared. As an outcome of this work it can be concluded that speckle-imaging techniques are robust to the variation in turbulence conditions and user controlled parameters expected when operating during the day over long horizontal paths. Speckle imaging systems that incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition, Knox-Thompson phase recover method is shown to produce images in half the time required by the bispectrum. The quality of images reconstructed using Knox-Thompson and bispectrum methods are also found to be nearly identical. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.
Resumo:
This work is conducted to study the complications associated with the sonic log prediction in carbonate logs and to investigate the possible solutions to accurately predict the sonic logs in Traverse Limestone. Well logs from fifty different wells were analyzed to define the mineralogy of the Traverse Limestone by using conventional 4-mineral and 3-mineral identification approaches. We modified the conventional 3-mineral identification approach (that completely neglects the gamma ray response) to correct the shale effects on the basis of gamma ray log before employing the 3-mineral identification. This modification helped to get the meaningful insight of the data when a plot was made between DGA (dry grain density) and UMA (Photoelectric Volumetric Cross-section) with the characteristic ternary diagram of the quartz, calcite and dolomite. The results were then compared with the 4-mineral identification approach. Contour maps of the average mineral fractions present in the Traverse Limestone were prepared to see the basin wide mineralogy of Traverse Limestone. In the second part, sonic response of Traverse Limestone was predicted in fifty randomly distributed wells. We used the modified time average equation that accounts for the shale effects on the basis of gamma ray log, and used it to predict the sonic behavior from density porosity and average porosity. To account for the secondary porosity of dolomite, we subtracted the dolomitic fraction of clean porosity from the total porosity. The pseudo-sonic logs were then compared with the measured sonic logs on the root mean square (RMS) basis. Addition of dolomite correction in modified time average equation improved the results of sonic prediction from neutron porosity and average porosity. The results demonstrated that sonic logs could be predicted in carbonate rocks with a root mean square error of about 4μsec/ft. We also attempted the use of individual mineral components for sonic log prediction but the ambiguities in mineral fractions and in the sonic properties of the minerals limited the accuracy of the results.
Resumo:
All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions.
Resumo:
Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 $unit{mu m}$ multimode and 4 - 9 $unit{mu m}$ single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 µm or 150 µm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is designed to couple light from a silicon waveguide to a polymer single mode waveguide. A focusing grating coupler is compared to a perpendicular grating coupler that is focused by a micro-molded lens. The focusing grating coupler had an optical loss of over -14 dB, while the grating coupler with a lens had an optical loss of -6.26 dB.
Resumo:
Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.