1 resultado para Mean longevity
em Digital Commons - Michigan Tech
Resumo:
Individual life history theory is largely focused on understanding the extent to which various phenotypes of an organism are adaptive and whether they represent life history trade-offs. Compensatory growth (CG) is increasingly appreciated as a phenotype of interest to evolutionary ecologists. CG or catch-up growth involves the ability of an organism to grow at a faster-than-normal rate following periods of under-nutrition once conditions subsequently improve. Here, I examine CG in a population of moose (Alces alces) living on Isle Royale, a remote island in Lake Superior, North America. I gained insights about CG from measurements of skeletal remains of 841 moose born throughout a 52-year period. In particular, I compared the length of the metatarsal bone (ML) with several skull measurements. While ML is an index of growth while the moose is in utero and during the first year or two of life, a moose skull continues to grow until a moose is approximately 5 years of age. Because of these differences, the strength of correlation between ML and skull measurements, for a group of moose (say female moose) is an indication of that group’s capacity for CG. Using this logic, I conducted analyses whose results suggest that the capacity for CG did not differ between sexes, between individuals born during periods of high and low population densities, or between individuals exhibiting signs of senescence and those that do not. The analysis did however suggest that long-lived individuals had a greater capacity for CG than short-lived individuals. These results suggest that CG in moose is an adaptive trait and might not be associated with life history trade-offs.