5 resultados para Mathematics Curriculum and its technologies

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observed Santiaguito volcano in southwestern Guatemala from March 2008 - March 2010. Seismic and infrasound data collected between January and March of 2009 contain records of many diverse processes occurring at the dacitic dome complex, including the recurrence of short lived (30-200 seconds in duration) harmonic tremor concurrent with ash poor gas emissions from the volcano. We employ several different analytical techniques to examine different portions of the tremor and source mechanisms. We use the parameters derived by this analysis to compare the feasibility of several suggested models of eruption mechanisms, and determine that this type of harmonic tremor is most justifiably generated by the flow of gas through crack networks generated by shear fracture along the magma conduit margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report has two major objectives. First, the results of an action research project conducted at my high school concerning the use of graphic organizers and their effects on students' written expression abilities. The findings from this action research project indicate that the use of graphic organizers can prove beneficial to students. The second major objective of this report is to provide a reflection and evaluation of my experiences as a participant in the Michigan Teacher Excellence Program (MiTEP). This program provided middle and high school science teachers with an opportunity to develop research based pedagogy techniques and develop the skill necessary to serve as leaders within the public school science community. The action research project described in the first chapter of this report was a collaborative project I participated in during my enrollment in ED 5705 at Michigan Technological University. I worked closely with two other teachers in my building - Brytt Ergang and James Wright. We met several times to develop a research question, and a procedure for testing our question. Each of us investigated how the use of graphic organizers by students in our classroom might impact their performance on writing assessments. We each collected data from several of our classes. In my case I collected data from 2 different classes over 2 different assignments. Our data was collected and the results analyzed separately from classroom to classroom. After the individual classroom data and corresponding analysis was compiled my fellow collaborators and I got together to discuss our findings. We worked together to write a conclusion based on our combined results in all of our classes.