4 resultados para Materials testing

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a continuous evolutionary process in asphalt pavement design. In the beginning it was crude and based on past experience. Through research, empirical methods were developed based on materials response to specific loading at the AASHO Road Test. Today, pavement design has progressed to a mechanistic-empirical method. This methodology takes into account the mechanical properties of the individual layers and uses empirical relationships to relate them to performance. The mechanical tests that are used as part of this methodology include dynamic modulus and flow number, which have been shown to correlate with field pavement performance. This thesis was based on a portion of a research project being conducted at Michigan Technological University (MTU) for the Wisconsin Department of Transportation (WisDOT). The global scope of this project dealt with the development of a library of values as they pertain to the mechanical properties of the asphalt pavement mixtures paved in Wisconsin. Additionally, a comparison with the current associated pavement design to that of the new AASHTO Design Guide was conducted. This thesis describes the development of the current pavement design methodology as well as the associated tests as part of a literature review. This report also details the materials that were sampled from field operations around the state of Wisconsin and their testing preparation and procedures. Testing was conducted on available round robin and three Wisconsin mixtures and the main results of the research were: The test history of the Superpave SPT (fatigue and permanent deformation dynamic modulus) does not affect the mean response for both dynamic modulus and flow number, but does increase the variability in the test results of the flow number. The method of specimen preparation, compacting to test geometry versus sawing/coring to test geometry, does not statistically appear to affect the intermediate and high temperature dynamic modulus and flow number test results. The 2002 AASHTO Design Guide simulations support the findings of the statistical analyses that the method of specimen preparation did not impact the performance of the HMA as a structural layer as predicted by the Design Guide software. The methodologies for determining the temperature-viscosity relationship as stipulated by Witczak are sensitive to the viscosity test temperatures employed. The increase in asphalt binder content by 0.3% was found to actually increase the dynamic modulus at the intermediate and high test temperature as well as flow number. This result was based the testing that was conducted and was contradictory to previous research and the hypothesis that was put forth for this thesis. This result should be used with caution and requires further review. Based on the limited results presented herein, the asphalt binder grade appears to have a greater impact on performance in the Superpave SPT than aggregate angularity. Dynamic modulus and flow number was shown to increase with traffic level (requiring an increase in aggregate angularity) and with a decrease in air voids and confirm the hypotheses regarding these two factors. Accumulated micro-strain at flow number as opposed to the use of flow number appeared to be a promising measure for comparing the quality of specimens within a specific mixture. At the current time the Design Guide and its associate software needs to be further improved prior to implementation by owner/agencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of electronic waste plastics were used in this investigation: acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). This research investigation utilized two approaches for incorporating electronic waste plastics into asphalt pavement materials. The first approach was blending and integrating recycled and processed electronic waste powders directly into asphalt mixtures and binders; and the second approach was to chemically treat recycled and processed electronic waste powders with hydro-peroxide before blending into asphalt mixtures and binders. The chemical treatment of electronic waste (e-waste) powders was intended to strengthen molecular bonding between e-waste plastics and asphalt binders for improved low and high temperature performance. Superpave asphalt binder and mixture testing techniques were conducted to determine the rheological and mechanical performance of the e-waste modified asphalt binders and mixtures. This investigation included a limited emissions-performance assessment to compare electronic waste modified asphalt pavement mixture emissions using SimaPro and performance using MEPDG software. Carbon dioxide emissions for e-waste modified pavement mixtures were compared with conventional asphalt pavement mixtures using SimaPro. MEPDG analysis was used to determine rutting potential between the various e-waste modified pavement mixtures and the control asphalt mixture. The results from this investigation showed the following: treating the electronic waste plastics delayed the onset of tertiary flow for electronic waste mixtures, electronic waste mixtures showed some improvement in dynamic modulus results at low temperatures versus the control mixture, and tensile strength ratio values for treated e-waste asphalt mixtures were improved versus the control mixture.