4 resultados para Materials and the technique

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.