15 resultados para Maple Shade
em Digital Commons - Michigan Tech
Resumo:
Tsuga canadensis (eastern hemlock) is a highly shade-tolerant, late-successional, and long-lived conifer species found throughout eastern North America. It is most often found in pure or nearly pure stands, because highly acidic and nutrient poor forest floor conditions are thought to favor T. canadensis regeneration while simultaneously limiting the establishment of some hardwood species with greater nutrient requirements. Once a common species, T. canadensis is currently experiencing widescale declines across its range. The hemlock woolly adelgid (Adelges tsugae) is decimating the population across its eastern distribution. Across the Upper Great Lakes region, where the adelgid is currently being held at bay by cold winter temperatures, T. canadensis has been experiencing failures in regeneration attributed, in part, to herbivory by white-tailed deer (Odocoileus virginianus). Deer utilize T. canadensis stands as winter habitat in areas of high snow depth. Tsuga canadensis, once a major component of these forests, currently exists at just a fraction of its pre-settlement abundance due to historic logging and contemporary forest management practices, and what remains is found in small remnant patches surrounded by second- and third-growth deciduous forests. The deer population across the region, however, is likely double that of pre-European settlement times. In this dissertation I explore the relationship between white-tailed deer use of T. canadensis as winter habitat and the effect this use is having on regeneration and forest succession. For this research I quantified stand composition and structure and abiotic variables of elevation and snow depth in 39 randomly selected T. canadensis stands from across the western Upper Peninsula of Michigan. I also quantified composition and the configuration of the landscapes surrounding these stands. I measured relative deer use of T. canadensis stands as pellet group piles deposited in each stand during each of three consecutive winters, 2005-06, 2006-07, and 2007-08. The results of this research suggest that deer use of T. canadensis stands as winter habitat is influenced primarily by snow depth, elevation, and the composition and configuration of the greater landscapes surrounding these stands. Specifically, stands with more heterogeneous landscapes surrounding them (i.e., a patchy mosaic of conifer, deciduous, and open cover) had higher relative deer use than stands surrounded by homogenous deciduous forest cover. Additionally, the intensity of use and the number of stands used was greater in years with higher average snow depth. Tsuga canadensis regeneration in these stands was negatively associated with deer use and Acer saccharum (sugar maple) basal area. Of the 39 stands, 17 and 22 stands had no T. canadensis regeneration in small and large sapling categories, respectively. Acer saccharum was the most common understory tree species, and the importance of A. saccharum in the understory (stems < 10 cm dbh) of the stands was positively associated with overstory A. saccharum dominance. Tsuga canadensis establishment was associated with high-decay coarse woody debris and moss, and deciduous leaf litter inputs in these stands may be limiting access to these important microsites. Furthermore, A. saccharum is more tolerant to the effects of deer herbivory than T. canadensis, giving A. saccharum a competitive advantage in stands being utilized as winter habitat by deer. My research suggests that limited microsite availability, in conjunction with deer herbivory, may be leading to an erosion in T. canadensis patch stability and an altered successional trajectory toward one of A. saccharum dominance, an alternately stable climax species.
Resumo:
Global climate change might significantly impact future ecosystems. The purpose of this thesis was to investigate potential changes in woody plant fine root respiration in response to a changing climate. In a sugar maple dominated northern hardwood forest, the soil was experimentally warmed (+4 °C) to determine if the tree roots could metabolically acclimate to warmer soil conditions. After one and a half years of soil warming, there was an indication of slight acclimation in the fine roots of sugar maple, helping the ecosystem avoid excessive C loss to the atmosphere. In a poor fen northern peatland in northern Michigan, the impacts of water level changes on woody plant fine root respiration were investigated. In areas of increased and also decreased water levels, there were increases in the CO2 efflux from ecosystem fine root respiration. These studies show the importance of investigating further the impacts climate change may have on C balance in northern ecosystems.
Resumo:
Throughout the Upper Great Lakes region, alterations to historic disturbance regimes have influenced plant community dynamics in hemlock-hardwood forests. Several important mesic forest species, eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), eastern white pine (Pinus strobus), and Canada yew (Taxus canadensis), are in decline due to exploitive logging practices used at the turn of the 20th century and the wave of intense fires that followed. Continued regeneration and recruitment failure is attributed to contemporary forest management practices and overbrowsing by white-tailed deer (Odocoileus virginianus). Therefore, I examined the influence of two concurrent disturbances, overstory removal and herbivory, on plant community dynamics in two hemlock-hardwood forests. I measured the post-disturbance regeneration response (herbaceous and woody species) inside and outside of deer exclosures in 20 artificial canopy gaps (50 – 450 m2) and monitored survival and growth for hundreds of planted seedlings. The results of this research show that interacting disturbances can play a large role in shaping plant community composition and structure in hemlock-hardwood forests. White-tailed deer herbivory homogenized the post-disturbance plant communities across the experimental gradient of gap areas, essentially making species compositions in small gaps “look like” those in large gaps. Deer browsing also influenced probability of survival for planted Canada yew cuttings; all else being equal an individual was nearly seven times more likely to survive if protected from herbivory (P < 0.001). In contrast, the ability of sugar maple (Acer saccharum) to persist under high levels of herbivory and respond rapidly to overstory release appears to be related to the presence of stem layering(i.e., portions of below-ground prostrate stem). Layering occurred in 52% of excavated saplings (n = 100) and was significantly associated with increased post-disturbance height growth. Understory light was also important to planted seedling establishment and height growth. Higher levels of direct under-canopy light negatively impacted survival for shade-tolerant hemlock and Canada yew, while an increase in diffuse light was linked to a higher probability of survival for yellow birch and height growth for hemlock and Canada yew. Increases in white pine height growth were also significantly associated with a decrease in canopy cover.
Resumo:
A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.
Resumo:
Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.
Resumo:
Acer saccharum Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as being the predisposing and inciting factors in different regions at different times. Some of the most common factors attributed to previous maple dieback episodes were insect defoliation outbreaks, inadequate precipitation, poor soils, atmospheric deposition, fungal pathogens, poor management, or a combination of these. The current sugar maple dieback was evaluated to determine the etiology, severity, and change in dieback on both industry and public lands. A network of 120 sugar maple health evaluation plots was established in the Upper Peninsula, Michigan, northern Wisconsin, and eastern Minnesota and evaluated annually from 2009-2012. Mean sugar maple crown dieback between 2009-2012 was 12.4% (ranging from 0.8-75.5%) across the region. Overall, during the sampling period, mean dieback decreased by 5% but individual plots and trees continued to decline. Relationships were examined between sugar maple dieback and growth, habitat conditions, ownership, climate, soil, foliage nutrients, and the maple pathogen sapstreak. The only statistically significant factor was found to be a high level of forest floor impacts due to exotic earthworm activity. Sugar maple on soils with lower pH had less earthworm impacts, less dieback, and higher growth rates than those on soils more favorable to earthworms. Nutritional status of foliage and soil was correlated with dieback and growth suggesting perturbation of nutrient cycling may be predisposing or contributing to dieback. The previous winter's snowfall totals, length of stay on the ground, and number of days with freezing temperatures had a significant positive relationship to sugar maple growth rates. Sapstreak disease, Ceratocystis virescens, may be contributing to dieback in some stands but was not related to the amount of dieback in the region. The ultimate goal of this research is to help forest managers in the Great Lakes Region prevent, anticipate, reduce, and/or salvage stands with dieback and loss in the future. An improved understanding of the complex etiology associated with sugar maple dieback in the Upper Great Lakes Region is necessary to make appropriate silvicultural decisions. Forest Health education helps increase awareness and proactive forest management in the face of changing forest ecosystems. Lessons are included to assist educators in incorporating forest health into standard biological disciplines at the secondary school curricula.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Resumo:
Organic amendments are commonly used to improve tree nursery soil conditions for increased seedling growth. However, few studies compare organic amendments effects on soil conditions, and fewer compare subsequent effects on seedling growth. The effects of three organic amendments on soil properties and seedling growth were investigated at the USDA Forest Service J.W. Toumey Nursery in Watersmeet, MI. Pine sawdust (red pine, Pinus resinosa), hardwood sawdust (maple, Acer spp. and aspen, Populus spp.), and peat were individually incorporated into a loamy sand nursery soil in August, 2006, and soil properties were sampled periodically for the next 14 months. Jack (Pinus banksiana), red, and white pine (Pinus strobus) were sown into test plots in June, 2007 and sampled for growth responses at the end of the growing season. It is hypothesized; pine sawdust and peat can be used as a satisfactory soil amendment to improve soil conditions and produce high quality seedlings, when compared to hardwood sawdust in bareroot nursery soils. This study has the potential to reduce nursery costs while broadening soil amendment options. The addition of peat and pine sawdust increased soil organic matter above control soil conditions after 14 months. However, hardwood sawdust-amended soils did not differ from control soils after same time period. High N concentrations in peat increased total soil N over the other treatments. Similarly, the addition of peat increased soil matric potential and available water over all other treatments. Seedlings grew tallest with the largest stem diameter, and had the largest biomass in both control soil and soil amended with peat, compared to either sawdust treatment. Seedlings grown in peat-amended soils had higher N concentrations than those grown in soils treated with pine sawdust, though neither was different from seedlings grown in control or hardwood sawdust-amended soils. Overall, peat is a well suited organic soil amendment for the enhancement of soil properties, but no amendments were able to increase one-year seedling growth over control soils.
Resumo:
Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.
Resumo:
El Balsamar is a community that relies upon coffee trees intercropped with the balsamo tree (Myroxylon balsamum L. Harms) for a substantial portion of household income. The balsamo tree is valued for its resin which is used as medicine in the community and sold commercially. Farmers believe that the shade from the balsamo tree decreases coffee yield compared to the shade from non balsamo species. Thirty coffee farms were studied, each set up as a paired plot. When cover type was balsamo, coffee yield was more likely to decrease. Plots with higher basal area were more likely to be balsamo cover type. As basal area increased, coffee yield decreased. Although coffee yield is lower under balsamo cover type, farmers still continue to plant and manage coffee under this cover type. Farmers accept a lower coffee yield because balsamo resin provides an important income source. Farmers rely on the community cooperative to provide them work to support their households. The cooperative relies on the farmers to provide the labor needed to harvest coffee and extract balsamo resin.
Resumo:
The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.
Resumo:
The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide oxidation in petroleum-based asphalt increases with increasing bioasphalt modifiers; 4) bioasphalt causes the asphaltene fractions in petroleum-based asphalt to precipitate out of the solvent maltene fractions; 5) there is no definite improvement or decline in the dynamic mix behavior of bio-modified mixes at low temperatures; 6) bio-modified asphalt mixes exhibit better rutting performance than traditional asphalt mixes; 7) bio-modified asphalt mixes have lower susceptibility to moisture damage; 8) more field compaction energy is needed to compact bio-modified mixes.
Resumo:
Strain rate significantly affects the strength of a material. The Split-Hopkinson Pressure Bar (SHPB) was initially used to study the effects of high strain rate (~103 1/s) testing of metals. Later modifications to the original technique allowed for the study of brittle materials such as ceramics, concrete, and rock. While material properties of wood for static and creep strain rates are readily available, data on the dynamic properties of wood are sparse. Previous work using the SHPB technique with wood has been limited in scope to variability of only a few conditions and tests of the applicability of the SHPB theory on wood have not been performed. Tests were conducted using a large diameter (3.0 inch (75 mm)) SHPB. The strain rate and total strain applied to a specimen are dependent on the striker bar length and velocity at impact. Pulse shapers are used to further modify the strain rate and change the shape of the strain pulse. A series of tests were used to determine test conditions necessary to produce a strain rate, total strain, and pulse shape appropriate for testing wood specimens. Hard maple, consisting of sugar maple (Acer saccharum) and black maple (Acer nigrum), and eastern white pine (Pinus strobus) specimens were used to represent a dense hardwood and a low-density soft wood. Specimens were machined to diameters of 2.5 and 3.0 inches and an assortment of lengths were tested to determine the appropriate specimen dimensions. Longitudinal specimens of 1.5 inch length and radial and tangential specimens of 0.5 inch length were found to be most applicable to SHPB testing. Stress/strain curves were generated from the SHPB data and validated with 6061-T6 aluminum and wood specimens. Stress was indirectly corroborated with gaged aluminum specimens. Specimen strain was assessed with strain gages, digital image analysis, and measurement of residual strain to confirm the strain calculated from SHPB data. The SHPB was found to be a useful tool in accurately assessing the material properties of wood under high strain rates (70 to 340 1/s) and short load durations (70 to 150 μs to compressive failure).
Resumo:
Tropical trees have been shown to be more susceptible to warming compared to temperate species, and have shown growth and photosynthetic declines at elevated temperatures as little as 3oC above ambient. However, regional and global vegetation models lack the data needed to accurately represent physiological response to increased temperatures in tropical forests. We compared the instantaneous photosynthetic responses to elevated temperatures of four mature tropical rainforest tree species in Puerto Rico and the temperate broadleaf species sugar maple (Acer saccharum) in Michigan. Contrary to expectations, leaves in the upper canopy of both temperate and tropical forests had temperature optima that are already exceeded by mean daily leaf temperatures. This indicates that tropical and temperate forests are already seeing photosynthesis decline at mid-day temperature. This decline may worsen as air temperatures rise with climate change if trees are unable to acclimate, increasing the likelihood that forests may shift from carbon sinks to sources. A secondary study was conducted on experimentally warmed sugar maple seedlings to determine if photosynthesis had been able to acclimate to +5oC air temperature over four years. Species abundance models had predicted a decline of sugar maple within the Upper Peninsula of Michigan over the next 100 years, due to elevated temperature and altered precipitation. Instantaneous photosynthetic temperature response curves on both control and heated seedlings showed that the differences between treatments were not statistically significant, though there was a 16% increase in temperature optima and a 3% increase in maximum rates of photosynthesis in warmed plots. Though evidence of acclimation was not significant, the seedlings did not fare poorly as the models suggest.