5 resultados para Manufacturing Process

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste effluents from the forest products industry are sources of lignocellulosic biomass that can be converted to ethanol by yeast after pretreatment. However, the challenge of improving ethanol yields from a mixed pentose and hexose fermentation of a potentially inhibitory hydrolysate still remains. Hardboard manufacturing process wastewater (HPW) was evaluated at a potential feedstream for lignocellulosic ethanol production by native xylose-fermenting yeast. After screening of xylose-fermenting yeasts, Scheffersomyces stipitis CBS 6054 was selected as the ideal organism for conversion of the HPW hydrolysate material. The individual and synergistic effects of inhibitory compounds present in the hydrolysate were evaluated using response surface methodology. It was concluded that organic acids have an additive negative effect on fermentations. Fermentation conditions were also optimized in terms of aeration and pH. Methods for improving productivity and achieving higher ethanol yields were investigated. Adaptation to the conditions present in the hydrolysate through repeated cell sub-culturing was used. The objectives of this present study were to adapt S. stipitis CBS6054 to a dilute-acid pretreated lignocellulosic containing waste stream; compare the physiological, metabolic, and proteomic profiles of the adapted strain to its parent; quantify changes in protein expression/regulation, metabolite abundance, and enzyme activity; and determine the biochemical and molecular mechanism of adaptation. The adapted culture showed improvement in both substrate utilization and ethanol yields compared to the unadapted parent strain. The adapted strain also represented a growth phenotype compared to its unadapted parent based on its physiological and proteomic profiles. Several potential targets that could be responsible for strain improvement were identified. These targets could have implications for metabolic engineering of strains for improved ethanol production from lignocellulosic feedstocks. Although this work focuses specifically on the conversion of HPW to ethanol, the methods developed can be used for any feedstock/product systems that employ a microbial conversion step. The benefit of this research is that the organisms will the optimized for a company's specific system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High flexural strength and stiffness can be achieved by forming a thin panel into a wave shape perpendicular to the bending direction. The use of corrugated shapes to gain flexural strength and stiffness is common in metal and reinforced plastic products. However, there is no commercial production of corrugated wood composite panels. This research focuses on the application of corrugated shapes to wood strand composite panels. Beam theory, classical plate theory and finite element models were used to analyze the bending behavior of corrugated panels. The most promising shallow corrugated panel configuration was identified based on structural performance and compatibility with construction practices. The corrugation profile selected has a wavelength equal to 8”, a channel depth equal to ¾”, a sidewall angle equal to 45 degrees and a panel thickness equal to 3/8”. 16”x16” panels were produced using random mats and 3-layer aligned mats with surface flakes parallel to the channels. Strong axis and weak axis bending tests were conducted. The test results indicate that flake orientation has little effect on the strong axis bending stiffness. The 3/8” thick random mat corrugated panels exhibit bending stiffness (400,000 lbs-in2/ft) and bending strength (3,000 in-lbs/ft) higher than 23/32” or 3/4” thick APA Rated Sturd-I-Floor with a 24” o.c. span rating. Shear and bearing test results show that the corrugated panel can withstand more than 50 psf of uniform load at 48” joist spacings. Molding trials on 16”x16” panels provided data for full size panel production. Full size 4’x8’ shallow corrugated panels were produced with only minor changes to the current oriented strandboard manufacturing process. Panel testing was done to simulate floor loading during construction, without a top underlayment layer, and during occupancy, with an underlayment over the panel to form a composite deck. Flexural tests were performed in single-span and two-span bending with line loads applied at mid-span. The average strong axis bending stiffness and bending strength of the full size corrugated panels (without the underlayment) were over 400,000 lbs-in2/ft and 3,000 in-lbs/ft, respectively. The composite deck system, which consisted of an OSB sheathing (15/32” thick) nailed-glued (using 3d ringshank nails and AFG-01 subfloor adhesive) to the corrugated subfloor achieved about 60% of the full composite stiffness resulting in about 3 times the bending stiffness of the corrugated subfloor (1,250,000 lbs-in2/ft). Based on the LRFD design criteria, the corrugated composite floor system can carry 40 psf of unfactored uniform loads, limited by the L/480 deflection limit state, at 48” joist spacings. Four 10-ft long composite T-beam specimens were built and tested for the composite action and the load sharing between a 24” wide corrugated deck system and the supporting I-joist. The average bending stiffness of the composite T-beam was 1.6 times higher than the bending stiffness of the I-joist. A 8-ft x 12-ft mock up floor was built to evaluate construction procedures. The assembly of the composite floor system is relatively simple. The corrugated composite floor system might be able to offset the cheaper labor costs of the single-layer Sturd-IFloor through the material savings. However, no conclusive result can be drawn, in terms of the construction costs, at this point without an in depth cost analysis of the two systems. The shallow corrugated composite floor system might be a potential alternative to the Sturd-I-Floor in the near future because of the excellent flexural stiffness provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of prestressing force over time influences the long-term deflection of the prestressed concrete element. Prestress losses are inherently complex due to the interaction of concrete creep, concrete shrinkage, and steel relaxation. Implementing advanced materials such as ultra-high performance concrete (UHPC) further complicates the estimation of prestress losses because of the changes in material models dependent on curing regime. Past research shows compressive creep is "locked in" when UHPC cylinders are subjected to thermal treatment before being loaded in compression. However, the current precasting manufacturing process would typically load the element (through prestressing strand release from the prestressing bed) before the element would be taken to the curing facility. Members of many ages are stored until curing could be applied to all of them at once. This research was conducted to determine the impact of variable curing times for UHPC on the prestress losses, and hence deflections. Three UHPC beams, a rectangular section, a modified bulb tee section, and a pi-girder, were assessed for losses and deflections using an incremental time step approach and material models specific to UHPC based on compressive creep and shrinkage testing. Results show that although it is important for prestressed UHPC beams to be thermally treated, to "lock in" material properties, the timing of thermal treatment leads to negligible differences in long-term deflections. Results also show that for UHPC elements that are thermally treated, changes in deflection are caused only by external loads because prestress losses are "locked-in" following thermal treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.