1 resultado para Magnetic quadrupole trap

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding clouds and their role in climate depends in part on our ability to understand how individual cloud particles respond to environmental conditions. Keeping this objective in mind, a quadrupole trap with thermodynamic control has been designed and constructed in order to create an environment conducive to studying clouds in the laboratory. The quadrupole trap allows a single cloud particle to be suspended for long times. The temperature and water vapor saturation ratio near the trapped particle is controlled by the flow of saturated air through a tube with a discontinuous wall temperature. The design has the unique aspect that the quadrupole electrodes are submerged in heat transfer fluid, completely isolated from the cylindrical levitation volume. This fluid is used in the thermodynamic system to cool the chamber to realistic cloud temperatures, and a heated section of the tube provides for the temperature discontinuity. Thus far, charged water droplets, ranging from about 30-70 microns in diameter have been levitated. In addition, the thermodynamic system has been shown to create the necessary thermal conditions that will create supersaturated conditions in subsequent experiments. These advances will help lead to the next generation of ice nucleation experiments, moving from hemispherical droplets on a substrate to a spherical droplet that is not in contact with any surface.