3 resultados para Lower temperatures

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, asphalt mixtures were produced at high temperatures (between 150°C to 180°C) and therefore often referred to as Hot Mix Asphalt (HMA). Recently, a new technology named Warm Mix Asphalt (WMA) was developed in Europe that allows HMA to be produced at a lower temperature. Over years of research efforts, a few WMA technologies were introduced including the foaming method using Aspha-min® and Advera® WMA; organic additives such as Sasobit® and Asphaltan B®; and chemical packages such as Evotherm® and Cecabase RT®. Benefits were found when lower temperatures were used to produce asphalt mixtures, especially when it comes to environmental and energy savings. Even though WMA has shown promising results in energy savings and emission reduction, however, only limited studies and laboratory tests have been conducted to date. The objectives of this project are to 1) develop a mix design framework for WMA by evaluating its mechanical properties; 2) evaluate performance of WMA containing high percentages of recycled asphalt material; and 3) evaluate the moisture sensitivity in WMA. The test results show that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. A recommended WMA mix design framework was developed as well. The WMA design framework was presented in this study to provide contractors, and government agencies successfully design WMA. Mixtures containing high RAP and RAS were studied as well and the overall results show that WMA technology allows the mixture containing high RAP content and RAS to be produced at lower temperature (up to 35°C lower) without significantly affect the performance of asphalt mixture in terms of rutting, fatigue and moisture susceptibility. Lastly, the study also found that by introducing the hydrated lime in the WMA, all mixtures modified by the hydrated lime passed the minimum requirement of 0.80. This indicated that, the moisture susceptibility of the WMA can be improved by adding the hydrated lime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.