2 resultados para Low calorie soft drinks

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain rate significantly affects the strength of a material. The Split-Hopkinson Pressure Bar (SHPB) was initially used to study the effects of high strain rate (~103 1/s) testing of metals. Later modifications to the original technique allowed for the study of brittle materials such as ceramics, concrete, and rock. While material properties of wood for static and creep strain rates are readily available, data on the dynamic properties of wood are sparse. Previous work using the SHPB technique with wood has been limited in scope to variability of only a few conditions and tests of the applicability of the SHPB theory on wood have not been performed. Tests were conducted using a large diameter (3.0 inch (75 mm)) SHPB. The strain rate and total strain applied to a specimen are dependent on the striker bar length and velocity at impact. Pulse shapers are used to further modify the strain rate and change the shape of the strain pulse. A series of tests were used to determine test conditions necessary to produce a strain rate, total strain, and pulse shape appropriate for testing wood specimens. Hard maple, consisting of sugar maple (Acer saccharum) and black maple (Acer nigrum), and eastern white pine (Pinus strobus) specimens were used to represent a dense hardwood and a low-density soft wood. Specimens were machined to diameters of 2.5 and 3.0 inches and an assortment of lengths were tested to determine the appropriate specimen dimensions. Longitudinal specimens of 1.5 inch length and radial and tangential specimens of 0.5 inch length were found to be most applicable to SHPB testing. Stress/strain curves were generated from the SHPB data and validated with 6061-T6 aluminum and wood specimens. Stress was indirectly corroborated with gaged aluminum specimens. Specimen strain was assessed with strain gages, digital image analysis, and measurement of residual strain to confirm the strain calculated from SHPB data. The SHPB was found to be a useful tool in accurately assessing the material properties of wood under high strain rates (70 to 340 1/s) and short load durations (70 to 150 μs to compressive failure).