3 resultados para Los Alamos National Laboratory
em Digital Commons - Michigan Tech
Resumo:
KIVA is a FORTRAN code developed by Los Alamos national lab to simulate complete engine cycle. KIVA is a flow solver code which is used to perform calculation of properties in a fluid flow field. It involves using various numerical schemes and methods to solve the Navier-Stokes equation. This project involves improving the accuracy of one such scheme by upgrading it to a higher order scheme. The numerical scheme to be modified is used in the critical final stage calculation called as rezoning phase. The primitive objective of this project is to implement a higher order numerical scheme, to validate and verify that the new scheme is better than the existing scheme. The latest version of the KIVA family (KIVA 4) is used for implementing the higher order scheme to support handling the unstructured mesh. The code is validated using the traditional shock tube problem and the results are verified to be more accurate than the existing schemes in reference with the analytical result. The convection test is performed to compare the computational accuracy on convective transfer; it is found that the new scheme has less numerical diffusion compared to the existing schemes. A four valve pentroof engine, an example case of KIVA package is used as application to ensure the stability of the scheme in practical application. The results are compared for the temperature profile. In spite of all the positive results, the numerical scheme implemented has a downside of consuming more CPU time for the computational analysis. The detailed comparison is provided. However, in an overview, the implementation of the higher order scheme in the latest code KIVA 4 is verified to be successful and it gives better results than the existing scheme which satisfies the objective of this project.
Resumo:
The selective catalytic reduction system is a well established technology for NOx emissions control in diesel engines. A one dimensional, single channel selective catalytic reduction (SCR) model was previously developed using Oak Ridge National Laboratory (ORNL) generated reactor data for an iron-zeolite catalyst system. Calibration of this model to fit the experimental reactor data collected at ORNL for a copper-zeolite SCR catalyst is presented. Initially a test protocol was developed in order to investigate the different phenomena responsible for the SCR system response. A SCR model with two distinct types of storage sites was used. The calibration process was started with storage capacity calculations for the catalyst sample. Then the chemical kinetics occurring at each segment of the protocol was investigated. The reactions included in this model were adsorption, desorption, standard SCR, fast SCR, slow SCR, NH3 Oxidation, NO oxidation and N2O formation. The reaction rates were identified for each temperature using a time domain optimization approach. Assuming an Arrhenius form of the reaction rates, activation energies and pre-exponential parameters were fit to the reaction rates. The results indicate that the Arrhenius form is appropriate and the reaction scheme used allows the model to fit to the experimental data and also for use in real world engine studies.
Resumo:
This report summarizes the work done for the Vehicle Powertrain Modeling and Design Problem Proposal portion of the EcoCAR3 proposal as specified in the Request for Proposal from Argonne National Laboratory. The results of the modeling exercises presented in the proposal showed that: An average conventional vehicle powered by a combustion engine could not meet the energy consumption target when the engine was sized to meet the acceleration target, due the relatively low thermal efficiency of the spark ignition engine. A battery electric vehicle could not meet the required range target of 320 km while keeping the vehicle weight below the gross vehicle weight rating of 2000 kg. This was due to the low energy density of the batteries which necessitated a large, and heavy, battery pack to provide enough energy to meet the range target. A series hybrid electric vehicle has the potential to meet the acceleration and energy consumption parameters when the components are optimally sized. A parallel hybrid electric vehicle has less energy conversion losses than a series hybrid electric vehicle which results in greater overall efficiency, lower energy consumption, and less emissions. For EcoCAR3, Michigan Tech proposes to develop a plug-in parallel hybrid vehicle (PPHEV) powered by a small Diesel engine operating on B20 Bio-Diesel fuel. This architecture was chosen over other options due to its compact design, lower cost, and its ability to provide performance levels and energy efficiency that meet or exceed the design targets. While this powertrain configuration requires a more complex control system and strategy than others, the student engineering team at Michigan Tech has significant recent experience with this architecture and has confidence that it will perform well in the events planned for the EcoCAR3 competition.