6 resultados para Lithium sulfur battery
em Digital Commons - Michigan Tech
Resumo:
A low cost electrophoretic deposition (EPD) process was successfully used for liquid metal thin film deposition with a high depositing rate of 0.6 µ/min. Furthermore, silicon nano-powder and liquid metal were then simultaneously deposited as the negative electrode of lithium-ion battery by a technology called co-EPD. The liquid metal was hoping to act as the matrix for silicon particles during lithium ion insertion and distraction. Half-cell testing was performed using as prepared co-EPD sample. An initial discharge capacity of 1500 mAh/g was reported for nano-silicon and galinstan electrode, although the capacity fading issue of these samples was also observed.
Resumo:
Nanoscale research in energy storage has recently focused on investigating the properties of nanostructures in order to increase energy density, power rate, and capacity. To better understand the intrinsic properties of nanomaterials, a new and advanced in situ system was designed that allows atomic scale observation of materials under external fields. A special holder equipped with a scanning tunneling microscopy (STM) probe inside a transmission electron microscopy (TEM) system was used to perform the in situ studies on mechanical, electrical, and electrochemical properties of nanomaterials. The nanostructures of titanium dioxide (TiO2) nanotubes are characterized by electron imaging, diffraction, and chemical analysis techniques inside TEM. TiO2 nanotube is one of the candidates as anode materials for lithium ion batteries. It is necessary to study their morphological, mechanical, electrical, and electrochemical properties at atomic level. The synthesis of TiO2 nanotubes showed that the aspect ratio of TiO2 could be controlled by processing parameters, such as anodization time and voltage. Ammonium hydroxide (NH4OH) treated TiO2 nanotubes showed unexpected instability. Observation revealed the nanotubes were disintegrated into nanoparticles and the tubular morphology was vanished after annealing. The nitrogen compounds incorporated in surface defects weaken the nanotube and result in the collapse of nanotube into nanoparticles during phase transformation. Next, the electrical and mechanical properties of TiO2 nanotubes were studied by in situ TEM system. Phase transformation of anatase TiO2 nanotubes into rutile nanoparticles was studied by in situ Joule heating. The results showed that single anatase TiO2 nanotubes broke into ultrafine small anatase nanoparticles. On further increasing the bias, the nanoclusters of anatase particles became prone to a solid state reaction and were grown into stable large rutile nanoparticles. The relationship between mechanical and electrical properties of TiO2 nanotubes was also investigated. Initially, both anatase and amorphous TiO2 nanotubes were characterized by using I-V test to demonstrate the semiconductor properties. The observation of mechanical bending on TiO2 nanotubes revealed that the conductivity would increase when bending deformation happened. The defects on the nanotubes created by deformation helped electron transportation to increase the conductivity. Lastly, the electrochemical properties of amorphous TiO2 nanotubes were characterized by in situ TEM system. The direct chemical and imaging evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes was studied. The results indicated that the lithiation started with the valance reduction of Ti4+ to Ti3+ leading to a LixTiO2 intercalation compound. The continued intercalation of Li ions in TiO2 nanotubes triggered an amorphous to crystalline phase transformation. The crystals were formed as nano islands and identified to be Li2Ti2O4 with cubic structure (a = 8.375 Å). This phase transformation is associated with local inhomogeneities in Li distribution. Based on these observations, a new reaction mechanism is proposed to explain the first cycle lithiation behavior in amorphous TiO2 nanotubes.
Resumo:
LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.
Resumo:
Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
The exsolution of volatiles from magma maintains an important control on volcanic eruption styles. The nucleation, growth, and connectivity of bubbles during magma ascent provide the driving force behind eruptions, and the rate, volume, and ease of gas exsolution can affect eruptive activity. Volcanic plumes are the observable consequence of this magmatic degassing, and remote sensing techniques allow us to quantify changes in gas exsolution. However, until recently the methods used to measure volcanic plumes did not have the capability of detecting rapid changes in degassing on the scale of standard geophysical observations. The advent of the UV camera now makes high sample rate gas measurements possible. This type of dataset can then be compared to other volcanic observations to provide an in depth picture of degassing mechanisms in the shallow conduit. The goals of this research are to develop a robust methodology for UV camera field measurements of volcanic plumes, and utilize this data in conjunction with seismoacoustic records to illuminate degassing processes. Field and laboratory experiments were conducted to determine the effects of imaging conditions, vignetting, exposure time, calibration technique, and filter usage on the UV camera sulfur dioxide measurements. Using the best practices determined from these studies, a field campaign was undertaken at Volcán de Pacaya, Guatemala. Coincident plume sulfur dioxide measurements, acoustic recordings, and seismic observations were collected and analyzed jointly. The results provide insight into the small explosive features, variations in degassing rate, and plumbing system of this complex volcanic system. This research provides useful information for determining volcanic hazard at Pacaya, and demonstrates the potential of the UV camera in multiparameter studies.