5 resultados para Linguistic Variation and Change

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat selection has been one of the main research topics in ecology for decades. Nevertheless, many aspects of habitat selection still need to be explored. In particular, previous studies have overlooked the importance of temporal variation in habitat selection and the value of including data on reproductive success in order to describe the best quality habitat for a species. We used data collected from radiocollared wolves in Yellowstone National Park (USA), between 1996 and 2008, to describe wolf habitat selection. In particular, we aimed to identify i) seasonal differences in wolf habitat selection, ii) factors influencing interannual variation in habitat selection, and iii) the effect of habitat selection on wolf reproductive success. We used probability density functions to describe wolf habitat use and habitat coverages to represent the habitat available to wolves. We used regression analysis to connect habitat use with habitat characteristics and habitat selection with reproductive success. Our most relevant result was discovering strong interannual variability in wolf habitat selection. This variability was in part explained by pack identity and differences in litter size and leadership of a pack between two years (summer) and in pack size and precipitation (winter). We also detected some seasonal differences. Wolves selected open habitats, intermediate elevations, intermediate distances from roads, and avoided steep slopes in late winter. They selected areas close to roads and avoided steep slopes in summer. In early winter, wolves selected wetlands, herbaceous and shrub vegetation types, and areas at intermediate elevation and distance from roads. Surprisingly, the habitat characteristics selected by wolves were not useful in predicting reproductive success. We hypothesize that interannual variability in wolf habitat selection may be too strong to detect effects on reproductive success. Moreover, prey availability and competitor pressure may also have an influence on wolf reproductive success, which we did not assess. This project demonstrated how important temporal variation is in shaping patterns of habitat selection. We still believe in the value of running long-term studies, but the effect of temporal variation should always be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of delineating Populus tremuloides (Michx.) clonal colonies based on morphology and phenology has been utilized in many studies and forestry applications since the 1950s. Recently, the availability and robustness of molecular markers has challenged the validity of such approaches for accurate clonal identification. However, genetically sampling an entire stand is largely impractical or impossible. For that reason, it is often necessary to delineate putative genet boundaries for a more selective approach when genetically analyzing a clonal population. Here I re-evaluated the usefulness of phenotypic delineation by: (1) genetically identifying clonal colonies using nuclear microsatellite markers, (2) assessing phenotypic inter- and intraclonal agreement, and (3) determining the accuracy of visible characters to correctly assign ramets to their respective genets. The long-term soil productivity study plot 28 was chosen for analysis and is located in the Ottawa National Forest, MI (46° 37'60.0" N, 89° 12'42.7" W). In total, 32 genets were identified from 181 stems using seven microsatellite markers. The average genet size was 5.5 ramets and six of the largest were selected for phenotypic analyses. Phenotypic analyses included budbreak timing, DBH, bark thickness, bark color or brightness, leaf senescence, leaf serrations, and leaf length ratio. All phenotypic characters, except for DBH, were useful for the analysis of inter- and intraclonal variation and phenotypic delineation. Generally, phenotypic expression was related to genotype with multiple response permutation procedure (MRPP) intraclonal distance values ranging from 0.148 and 0.427 and an observed MRPP delta value=0.221 when the expected delta=0.5. The phenotypic traits, though, overlapped significantly among some clones. When stems were assigned into phenotypic groups, six phenotypic groups were identified with each group containing a dominant genotype or clonal colony. All phenotypic groups contained stems from at least two clonal colonies and no clonal colony was entirely contained within one phenotypic group. These results demonstrate that phenotype varies with genotype and stand clonality can be determined using phenotypic characters, but phenotypic delineation is less precise. I therefore recommend that some genetic identification follow any phenotypic delineation. The amount of genetic identification required for clonal confirmation is likely to vary based on stand and environmental conditions. Further analysis, however, is needed to test these findings in other forest stands and populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Housing development has increased dramatically in the Midwest with a high concentration around lakes. This development plays an important role in the economy of Northwoods communities. However, poorly planned development has the potential to alter a lake’s ecological processes and integrity. Studies have documented the impacts of housing developments and reported dramatic, negative changes to the flora and fauna in Vilas County, Wisconsin. One component of my research included examining the previously unstudied effects of residential development on the abundance and diversity of medium to large-bodied mammals using lakeshore ecosystems. The results suggest that a higher diversity of mammals were detected on low-development lakes. Coyotes were the most numerous species detected with the majority encountered on low-development lakes. White-tailed deer and red fox were more abundant on high-development lakes as compared to low-development lakes. I concluded that high-development lakes are having a negative affect on the mammal community in this area. Recently, lakeshore restoration has occurred on privately owned property in Vilas County and elsewhere in the Northwoods, but little is known about the benefit, if any, from these restoration efforts. A partnership between government agencies and academia has launched a long-term research project investigating the ecological benefits of lakeshore restoration. I investigated the impacts of using down woody material (DWM) to increase the success of restoration projects. Specifically, I tested the hypothesis that down woody material would reduce the variation in soil temperature, retain soil moisture, and improve plant survival and growth rates. I randomly assigned three DWM coverage treatments (0%, 25%, and 50%) on 3 m × 3 m experimental plots (n = 10 per treatment). The mean maximum soil temperature, temperature variation, and change in soil moisture content were significantly lower in the 25% and 50% DWM plots. I found no difference in survival, but snowberry (Symphoricarpos albus) and Barren strawberry (Waldstenia fragaroides) growth was significant greater in the 25% and 50% DWM plots. DWM addition can be considered a useful technique to physically manipulate soil properties and improve plant growth. Finally, I provided baseline data on vegetation structure, bird and small mammal community diversity and abundance for three lakes targeted for restoration efforts and their paired reference lakes. This study is one of the first of it kind in the area and continuing to document the degree of change in subsequent years will provide insight into the way the local ecosystem functions and how ecological communities are structured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).