3 resultados para Limited migrative model

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Internal combustion engines are, and will continue to be, a primary mode of power generation for ground transportation. Challenges exist in meeting fuel consumption regulations and emission standards while upholding performance, as fuel prices rise, and resource depletion and environmental impacts are of increasing concern. Diesel engines are advantageous due to their inherent efficiency advantage over spark ignition engines; however, their NOx and soot emissions can be difficult to control and reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled providing an intrinsic link between spray and emissions, motivating detailed, fundamental studies on spray, vaporization, mixing, and combustion characteristics under engine relevant conditions. An optical combustion vessel facility has been developed at Michigan Technological University for these studies, with detailed tests and analysis being conducted. In this combustion vessel facility a preburn procedure for thermodynamic state generation is used, and validated using chemical kinetics modeling both for the MTU vessel, and institutions comprising the Engine Combustion Network international collaborative research initiative. It is shown that minor species produced are representative of modern diesel engines running exhaust gas recirculation and do not impact the autoignition of n-heptane. Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter trends agree with literature. Fluctuations in liquid length about a quasi-steady value are quantified, along with plume to plume variations. Hypotheses are developed for their causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and geometry, chamber temperature gradients, and turbulence. These are explored using a mixing limited vaporization model with an equation of state approach for thermopyhysical properties. This model is also applied to single and multi-component surrogates. Results include the development of the combustion research facility and validated thermodynamic state generation procedure. The developed equation of state approach provides application for improving surrogate fuels, both single and multi-component, in terms of diesel spray liquid length, with knowledge of only critical fuel properties. Experimental studies are coupled with modeling incorporating improved thermodynamic non-ideal gas and fuel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.