3 resultados para Liberation

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A re-examination of seismic time-lapse data from the Teal South field provides support for a previously proposed model of regional pressure decline and the associated liberation of gas from nearby reservoirs due to the production from the only reservoir among them that is under production. The use of a specific attribute, instantaneous amplitude, and a series of time slices, however, provides increased detail in understanding fluid migration into or out of the reservoirs, and the path taken by pressure changes across faults. The regional decrease of pressure due to production in one reservoir has dramatic effects in nearby untapped reservoirs, one of which appears to exhibit evidence for the escape, and possible re-trapping nearby, of hydrocarbons from a spill point. The influx of water into the producing reservoir is also evidenced by a decrease in amplitude at one end of the oil-water contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990’s. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three poststack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a “new” reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the “gas cap” and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required. Using Walton’s model for anisotropic unconsolidated sand, I successfully model the time-lapse changes for all phases of production. This observation may be of interest for application to other unconsolidated overpressured reservoirs under production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron ore is one of the most important ores in the world. Over the past century, most mining of iron ore has been focused on magnetite (Fe3O4). As the name suggests, magnetite is magnetic in nature and is easily separated from gangue (unwanted) minerals through magnetic separation processes. Unfortunately, the magnetite ore bodies are diminishing. Because of this, there has been a recent drive to pursue technology that can economically separate hematite (Fe2O3) from its gangue minerals as hematite is a much more abundant source of iron. Most hematite ore has a very small liberation size that is frequently less than 25μm. Beneficiation of any ore with this fine of a liberation size requires advanced processing methods and is seldom pursued. A single process, known as selective flocculation and dispersion, has been successfully implemented at a plant scale for the beneficiation of fine liberation size hematite ore. Very little is known about this process as it was discovered by the U.S. Bureau of Mines by accident. The process is driven by water chemistry and surface chemistry modifications that enhance the separation of the hematite from its gangue minerals. This dissertation focuses on the role of water chemistry and process reagents in this hematite beneficiation process. It has been shown that certain ions, including calcium and magnesium, play a significant role in the process. These ions have a significant effect on the surface chemistry as reported by zeta potential studies. It was shown that magnesium ions within the process water have a more significant impact on surface chemistry than calcium ions due to steric hindrance effects at the hematite surface. It has also been shown that polyacrylic acid dispersants, if used in the process, can increase product quality (increase iron content, decrease phosphorus content, decrease silica content) substantially. Water, surface and reagent chemistry experiments were performed at a laboratory, pilot, and full plant scale during the course of this work. Many of the conclusions developed in the laboratory and pilot scale were found to be true at the full plant scale as well. These studies are the first published in history to develop theories of water chemistry and surface chemistry interactions at a full plant scale.