5 resultados para Learning of improvisation
em Digital Commons - Michigan Tech
Resumo:
This study investigated the effectiveness of incorporating several new instructional strategies into an International Baccalaureate (IB) chemistry course in terms of how they supported high school seniors’ understanding of electrochemistry. The three new methods used were (a) providing opportunities for visualization of particle movement by student manipulation of physical models and interactive computer simulations, (b) explicitly addressing common misconceptions identified in the literature, and (c) teaching an algorithmic, step-wise approach for determining the products of an aqueous solution electrolysis. Changes in student understanding were assessed through test scores on both internally and externally administered exams over a two-year period. It was found that visualization practice and explicit misconception instruction improved student understanding, but the effect was more apparent in the short-term. The data suggested that instruction time spent on algorithm practice was insufficient to cause significant test score improvement. There was, however, a substantial increase in the percentage of the experimental group students who chose to answer an optional electrochemistry-related external exam question, indicating an increase in student confidence. Implications for future instruction are discussed.
Resumo:
This study explores the effects of modeling instruction on student learning in physics. Multiple representations grounded in physical contexts were employed by students to analyze the results of inquiry lab investigations. Class whiteboard discussions geared toward a class consensus following Socratic dialogue were implemented throughout the modeling cycle. Lab investigations designed to address student preconceptions related to Newton’s Third Law were implemented. Student achievement was measured based on normalized gains on the Force Concept Inventory. Normalized FCI gains achieved by students in this study were comparable to those achieved by students of other novice modelers. Physics students who had taken a modeling Intro to Physics course scored significantly higher on the FCI posttest than those who had not. The FCI results also provided insight into deeply rooted student preconceptions related to Newton’s Third Law. Implications for instruction and the design of lab investigations related to Newton’s Third Law are discussed.
Resumo:
This study’s objective was to answer three research questions related to students’ knowledge and attitudes about water quality and availability issues. It is important to understand what knowledge students have about environmental problems such as these, because today’s students will become the problem solvers of the future. If environmental problems, such as those related to water quality, are ever going to be solved, students must be environmentally literate. Several methods of data collection were used. Surveys were given to both Bolivian and Jackson High School students in order to comparison their initial knowledge and attitudes about water quality issues. To study the effects of instruction, a unit of instruction about water quality issues was then taught to the Jackson High School students to see what impact it would have on their knowledge. In addition, the learning of two different groups of Jackson High School students was compared—one group of general education students and a second group of students that were learning in an inclusion classroom and included special education students and struggling learners form the general education population. Student and teacher journals, a unit test, and postsurvey responses were included in the data set. Results suggested that when comparing Bolivian students and Jackson High School students, Jackson High School students were more knowledgeable concerning clean water infrastructure and its importance, despite the fact that these issues were less relevant to their lives than for their Bolivian counterparts. Although overall, the data suggested that all the Jackson High students showed evidence that the instruction impacted their knowledge, the advanced Biology students appeared to show stronger gains than their peers in an inclusion classroom.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
The purpose of this research was to address how culturally informed ethnomathematical methods of teaching can be utilized to support the learning of Navajo students in mathematics. The study was conducted over the course of four years on the Navajo Reservations at Tohatchi Middle School in Tohatchi New Mexico. The students involved in the study were all in 8th grade and were enrolled either in Algebra 1 or a Response to Intervention, RTI, class. The data collected came in the form of a student survey, student observation and student assessment. The teacher written survey, a math textbook word problem, and two original math textbook problems along with their rewritten version were the sources of these three studies. The first year of the study consisted of a math attitude survey and how Navajo students perceived math as a subject of interest. The students answered four questions pertaining to their thoughts about mathematics. The students’ responses were positive according to their written answers. The second year of the study involved the observation of how students worked through a math word problem as a group. This method tested how the students culturally interacted in order to solve a math problem. Their questions and reasoning to solve the problem were shared with peers and the teacher. The teacher supported the students in understanding and solving the problem by asking questions that kept the students focused on the goal of solving the problem. The students worked collaboratively and openly in order to complete the activity. During the iv study, the teacher was more able to notice the students’ deficiencies individually or as a group, therefore was able to support them in a more specific manner. The last study was conducted over a period of two different years. This study was used to determine how textbook bias in the form of its sentence structure or word choice affects the performance of students who are not culturally familiar with one or both. It was found that the students performed better and took less time on the rewritten problem than on the original problem. The data suggests that focusing on the culture, language and education of Navajo students can affect how the students learn and understand math.