3 resultados para Latent Dirichlet Allocation
em Digital Commons - Michigan Tech
Resumo:
The amount of information contained within the Internet has exploded in recent decades. As more and more news, blogs, and many other kinds of articles that are published on the Internet, categorization of articles and documents are increasingly desired. Among the approaches to categorize articles, labeling is one of the most common method; it provides a relatively intuitive and effective way to separate articles into different categories. However, manual labeling is limited by its efficiency, even thought the labels selected manually have relatively high quality. This report explores the topic modeling approach of Online Latent Dirichlet Allocation (Online-LDA). Additionally, a method to automatically label articles with their latent topics by combining the Online-LDA posterior with a probabilistic automatic labeling algorithm is implemented. The goal of this report is to examine the accuracy of the labels generated automatically by a topic model and probabilistic relevance algorithm for a set of real-world, dynamically updated articles from an online Rich Site Summary (RSS) service.
Resumo:
Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.