4 resultados para LATRINES
em Digital Commons - Michigan Tech
Resumo:
The prevalence of Ventilated Improved Pit (VIP) latrines in Ghana suggests that the design must have a high user acceptance. The two key factors attributed to user acceptance of a VIP latrine over an alternative latrine design, such as the basic pit latrine, are its ability to remove foul odors and maintain low fly populations; both of which are a direct result of an adequate ventilation flow rate. Adequate ventilation for odorless conditions in a VIP latrine has been defined by the United Nations Development Program (UNDP) and the World Bank, as an air flow rate equivalent to 6 air changes per hour (6 ACH) of the superstructure’s air volume. Additionally, the UNDP determined that the three primary factors that affect ventilation are: 1) wind passing over the mouth of the vent pipe, 2) wind passing into the superstructure, and 3) solar radiation on to the vent pipe. Previous studies also indicate that vent pipes with larger diameters increase flow rates, and the application of carbonaceous materials to the pit sludge reduces odor and insect prevalence. Furthermore, proper design and construction is critical for the correct functioning of VIP latrines. Under-designing could cause problems with odor and insect control; over-designing would increase costs unnecessarily, thereby making it potentially unaffordable for benefactors to independently construct, repair or replace a VIP latrine. The present study evaluated the design of VIP latrines used by rural communities in the Upper West Region of Ghana with the focus of assessing adequate ventilation for odor removal and insect control. Thirty VIP latrines from six communities in the Upper West Region of Ghana were sampled. Each VIP latrine’s ventilation flow rate and micro-environment was measured using a hot-wire anemometer probe and portable weather station for a minimum of four hours. To capture any temporal or seasonal variations in ventilation, ten of the latrines were sampled monthly over the course of three months for a minimum of 12 hours. A latrine usage survey and a cost analysis were also conducted to further assess the VIP latrine as an appropriated technology for sustainable development in the Upper West Region. It was found that the average air flow rate over the entire sample set was 11.3 m3/hr. The minimum and maximum air flow rates were 0.0 m3/hr and 48.0 m3/hr respectively. Only 1 of the 30 VIP latrines (3%) was found to have an air flow rate greater than the UNDP-defined odorless condition of 6 ACH. Furthermore, 19 VIP latrines (63%) were found to have an average air flow rate of less than half the flow rate required to achieve 6 ACH. The dominant factors affecting ventilation flow rate were wind passing over the mouth of the vent pipe and air buoyancy forces, which were the effect of differences in temperature between the substructure and the ambient environment. Of 76 usable VIP latrines found in one community, 68.4% were in actual use. The cost of a VIP latrine was found to be equivalent to approximately 12% of the mean annual household income for Upper West Region inhabitants.
Resumo:
Water resource depletion and sanitation are growing problems around the world. A solution to both of these problems is the use of composting latrines, as it requires no water and has been recommended by the World Health Organization as an improved sanitation technology. However, little analysis has been done on the decomposition process occurring inside the latrine, including what temperatures are reached and what variables most affect the composting process. Having better knowledge of how outside variables affect composting latrines can aid development workers on the choice of implementing such technology, and to better educate the users on the appropriate methods of maintenance. This report presents a full, detailed construction manual and temperature data analysis of a double vault composting latrine. During the author’s two year Peace Corps service in rural Paraguay he was involved with building twenty one composting latrines, and took detailed temperature readings and visual observations of his personal latrine for ten months. The author also took limited temperature readings of fourteen community member’s latrines over a three month period. These data points were analyzed to find correlations between compost temperatures and several variables. The two main variables found to affect the compost temperatures were the seasonal trends of the outside temperatures, and the mixing and addition of moisture to the compost. Outside seasonal temperature changes were compared to those of the compost and a linear regression was performed resulting in a R2-value of 0.89. Mixing the compost and adding water, or a water/urine mixture, resulted in temperature increases of the compost 100% of the time, with seasonal temperatures determining the rate and duration of the temperature increases. The temperature readings were also used to find events when certain temperatures were held for sufficient amounts of time to reach total pathogen destruction in the compost. Four different events were recorded when a temperature of 122°F (50°C) was held for at least 24 hours, ensuring total pathogen destruction in that area of the compost. One event of 114.8°F (46°C) held for one week was also recorded, again ensuring total pathogen destruction. Through the analysis of the temperature data, however, it was found that the compost only reached total pathogen destruction levels during ten percent of the data points. Because of this the storage time recommendation outlined by the World Health Organization should be complied with. The WHO recommends storing compost for 1.5-2 years in climates with ambient temperatures of 2-20°C (35-68°F), and for at least 1 year with ambient temperatures of 20-35°C (68-95°F). If these storage durations are obtainable the use of the double vault composting latrine is an economical and achievable solution to sanitation while conserving water resources.
Resumo:
In Panama, one of the Environmental Health (EH) Sector’s primary goals is to improve the health of rural Panamanians by helping them to adopt behaviors and practices that improve access to and use of sanitation systems. In complying with this goal, the EH sector has used participatory development models to improve hygiene and increase access to latrines through volunteer managed latrine construction projects. Unfortunately, there is little understanding of the long term sustainability of these interventions after the volunteers have completed their service. With the Peace Corps adapting their Monitoring, Reporting, and Evaluation procedures, it is appropriate to evaluate the sustainability of sanitation interventions offering recommendations for the adaptions of the EH training program, project management, and evaluation procedures. Recognizing the need for evaluation of past latrine projects, the author performed a post project assessment of 19 pit latrine projects using participatory analysis methodologies. First, the author reviewed volunteers’ perspectives of pit latrine projects in a survey. Then, for comparison, the author performed a survey of latrine projects using a benchmarking scoring system to rate solid waste management, drainage, latrine siting, latrine condition, and hygiene. It was observed that the Sanitation WASH matrix created by the author was an effective tool for evaluating the efficacy of sanitation interventions. Overall more than 75%, of latrines constructed were in use. However, there were some areas where improvements could be made for both latrine construction and health and hygiene. The latrines scored poorly on the indicators related to the privacy structure and seat covers. Interestingly those are the two items least likely to be included in project subsidies. Furthermore, scores for hygiene-related indicators were low; particularly those related to hand washing and cleanliness of the kitchen, indicating potential for improvement in hygiene education. Based on these outcomes, the EH sector should consider including subsidies and standardized designs for privacy structures and seat covers for latrines. In addition, the universal adoption of contracts and/or deposits for project beneficiaries is expected to improve the completion of latrines. In order to address the low scores in the health and hygiene indicators, the EH sector should adapt volunteer training, in addition to standardizing health and hygiene intervention procedures. In doing so, the sector should mimic the Community Health Club model that has shown success in improving health and hygiene indicators, as well as use a training session plan format similar to those in the Water Committee Seminar manual. Finally, the sector should have an experienced volunteer dedicated to program oversight and post-project monitoring and evaluation.
Resumo:
Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.