2 resultados para Knowledge-doing networks
em Digital Commons - Michigan Tech
Resumo:
How can we calculate earthquake magnitudes when the signal is clipped and over-run? When a volcano is very active, the seismic record may saturate (i.e., the full amplitude of the signal is not recorded) or be over-run (i.e., the end of one event is covered by the start of a new event). The duration, and sometimes the amplitude, of an earthquake signal are necessary for determining event magnitudes; thus, it may be impossible to calculate earthquake magnitudes when a volcano is very active. This problem is most likely to occur at volcanoes with limited networks of short period seismometers. This study outlines two methods for calculating earthquake magnitudes when events are clipped and over-run. The first method entails modeling the shape of earthquake codas as a power law function and extrapolating duration from the decay of the function. The second method draws relations between clipped duration (i.e., the length of time a signal is clipped) and the full duration. These methods allow for magnitudes to be determined within 0.2 to 0.4 units of magnitude. This error is within the range of analyst hand-picks and is within the acceptable limits of uncertainty when quickly quantifying volcanic energy release during volcanic crises. Most importantly, these estimates can be made when data are clipped or over-run. These methods were developed with data from the initial stages of the 2004-2008 eruption at Mount St. Helens. Mount St. Helens is a well-studied volcano with many instruments placed at varying distances from the vent. This fact makes the 2004-2008 eruption a good place to calibrate and refine methodologies that can be applied to volcanoes with limited networks.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.