1 resultado para Johnson-Mehl-Avrami equation
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (1)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (52)
- CentAUR: Central Archive University of Reading - UK (78)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (127)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- CUNY Academic Works (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (6)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (90)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (2)
- Ministerio de Cultura, Spain (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (21)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (49)
- Queensland University of Technology - ePrints Archive (150)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (159)
- School of Medicine, Washington University, United States (23)
- South Carolina State Documents Depository (5)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (24)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (7)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
Resumo:
To estimate a parameter in an elliptic boundary value problem, the method of equation error chooses the value that minimizes the error in the PDE and boundary condition (the solution of the BVP having been replaced by a measurement). The estimated parameter converges to the exact value as the measured data converge to the exact value, provided Tikhonov regularization is used to control the instability inherent in the problem. The error in the estimated solution can be bounded in an appropriate quotient norm; estimates can be derived for both the underlying (infinite-dimensional) problem and a finite-element discretization that can be implemented in a practical algorithm. Numerical experiments demonstrate the efficacy and limitations of the method.