3 resultados para Island of Elba,Fluid inclusions,Petrography,Torre di Rio skarn,Iron ore deposits

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the evolution of geomagnetic paleointensity are crucial for understanding the geodynamo and Earth’s thermal history. Although basaltic flows are preferred for paleointensity experiments, quickly cooled mafic dykes have also been used. However, the paleointensity values obtained from the dykes are systematically lower than those from lava flows. This bias may originate from the difference in cooling histories and resultant magnetic mineralogies of extrusive and intrusive rocks. To explore this hypothesis, the magnetic mineralogy of two feeder dyke-lave flow systems, from Thunder Bay (Canada) and La Cienega (New-Mexico), has been studied using magnetic and microscopy methods. Within each system, the flow and dyke show different stages of deuteric oxidation of titanomagnetite, but the oxidation stages also differ between the two systems. It is concluded that the tested hypothesis is viable, but the relationships between the magnetic and mineralogical properties of flows and dykes are complex and need a further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rooted in critical scholarship this dissertation is an interdisciplinary study, which contends that having a history is a basic human right. Advocating a newly conceived and termed, Solidarity-inspired History framework/practice perspective, the dissertation argues for and then delivers a restorative voice to working-class historical actors during the 1916 Minnesota Iron Ore Strike. Utilizing an interdisciplinary methodological framework the dissertation combines research methods from the Humanities and the Social Sciences to form a working-class history that is a corrective to standardized studies of labor in the late 19th and early 20th centuries. Oftentimes class interests and power relationships determine the dominant perspectives or voices established in history and disregard people and organizations that run counter to, or in the face of, customary or traditional American themes of patriotism, the Protestant work ethic, adherence to capitalist dogma, or United States exceptionalism. This dissertation counteracts these traditional narratives with a unique, perhaps even revolutionary, examination of the 1916 Minnesota Iron Ore Strike. The intention of this dissertation's critical perspective is to poke, prod, and prompt academics, historians, and the general public to rethink, and then think again, about the place of those who have been dislocated from or altogether forgotten, misplaced, or underrepresented in the historical record. Thus, the purpose of the dissertation is to give voice to historical actors in the dismembered past. Historical actors who have run counter to traditional American narratives often have their body of "evidence" disjointed or completely dislocated from the story of our nation. This type of disremembering creates an artificial recollection of our collective past, which de-articulates past struggles from contemporary groups seeking solidarity and social justice in the present. Class-conscious actors, immigrants, women, the GLBTQ community, and people of color have the right to be remembered on their own terms using primary sources and resources they produced. Therefore, similar to the Wobblies industrial union and its rank-and-file, this dissertation seeks to fan the flames of discontented historical memory by offering a working-class perspective of the 1916 Strike that seeks to interpret the actions, events, people, and places of the strike anew, thus restoring the voices of these marginalized historical actors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.