2 resultados para Ion Exchange

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Space Station (ISS) requires a substantial amount of potable water for use by the crew. The economic and logistic limitations of transporting the vast amount of water required onboard the ISS necessitate onboard recovery and reuse of the aqueous waste streams. Various treatment technologies are employed within the ISS water processor to render the waste water potable, including filtration, ion exchange, adsorption, and catalytic wet oxidation. The ion exchange resins and adsorption media are combined in multifiltration beds for removal of ionic and organic compounds. A mathematical model (MFBMODEL™) designed to predict the performance of a multifiltration (MF) bed was developed. MFBMODEL consists of ion exchange models for describing the behavior of the different resin types in a MF bed (e.g., mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins) and an adsorption model capable of predicting the performance of the adsorbents in a MF bed. Multicomponent ion exchange ii equilibrium models that incorporate the water formation reaction, electroneutrality condition, and degree of ionization of weak acids and bases for mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins were developed and verified. The equilibrium models developed use a tanks-inseries approach that allows for consideration of variable influent concentrations. The adsorption modeling approach was developed in related studies and application within the MFBMODEL framework was demonstrated in the Appendix to this study. MFBMODEL consists of a graphical user interface programmed in Visual Basic and Fortran computational routines. This dissertation shows MF bed modeling results in which the model is verified for a surrogate of the ISS waste shower and handwash stream. In addition, a multicomponent ion exchange model that incorporates mass transfer effects was developed, which is capable of describing the performance of strong acid cation (SAC) and strong base anion (SBA) exchange resins, but not including reaction effects. This dissertation presents results showing the mass transfer model's capability to predict the performance of binary and multicomponent column data for SAC and SBA exchange resins. The ion exchange equilibrium and mass transfer models developed in this study are also applicable to terrestrial water treatment systems. They could be applied for removal of cations and anions from groundwater (e.g., hardness, nitrate, perchlorate) and from industrial process waters (e.g. boiler water, ultrapure water in the semiconductor industry).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A family of LiMO2 materials (M=Ni0.25Mn0.75) was prepared from Na1.2-xLixMO∂ precursors (0≤x≤0.6) via ion exchange. The resulting IE products were examined via XRD and compared to simulated XRD patterns produced using DIFFax to determine the defect structures resulting from the IE process. For the 0.1≤x≤0.6 materials, it is observed that there are 3 LiMO2 sub-phases with different Li contents present. As the amount of Li in the precursor increases, the amount of each phase changes resulting in a net shift to higher 2-theta; corresponding to an overall decrease in lattice parameter, approaching the theoretical values for LiMO2. Additionally, as x increases, the probability of O3-type shifting increases, most likely due to an increase in the amount O3-Li2MO3 minority phase which acts to weaken bonds in the TM layer, allowing the O3 shift to occur more easily. For the x=0 IE product, it was seen that the product had an ~O2-type structure, but with lattice parameters closer to those expected for a NaMO2 material.