2 resultados para Intrusive Thoughts

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-intrusive interferometric measurement technique has been successfully developed to measure fluid compressibility in both gas and liquid phases via refractive index (RI) changes. The technique, consisting of an unfocused laser beam impinging a glass channel, can be used to separate and quantify cell deflection, fluid flow rates, and pressure variations in microchannels. Currently in fields such as microfluidics, pressure and flow rate measurement devices are orders of magnitude larger than the channel cross-sections making direct pressure and fluid flow rate measurements impossible. Due to the non-intrusive nature of this technique, such measurements are now possible, opening the door for a myriad of new scientific research and experimentation. This technique, adapted from the concept of Micro Interferometric Backscatter Detection (MIBD), boasts the ability to provide comparable sensitivities in a variety of channel types and provides quantification capability not previously demonstrated in backscatter detection techniques. Measurement sensitivity depends heavily on experimental parameters such as beam impingement angle, fluid volume, photodetector sensitivity, and a channel’s dimensional tolerances. The current apparatus readily quantifies fluid RI changes of 10-5 refractive index units (RIU) corresponding to pressures of approximately 14 psi and 1 psi in water and air, respectively. MIBD reports detection capability as low as 10-9 RIU and the newly adapted technique has the potential to meet and exceed this limit providing quantification in the place of detection. Specific device sensitivities are discussed and suggestions are provided on how the technique may be refined to provide optimal quantification capabilities based on experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through comparative analysis of the immigrant labor forces at work in iron mining in northern Minnesota, coal mining in Illinois, and steel milling in the Calumet region of Chicago and Gary, this paper addresses the forms of social distance separating and marginalizing new immigrants from American society and trade unionism that existed in 1914, the year that marked the end point of mass immigration from Eastern and Southern Europe. The “new immigration” was a labor migration that congregated its subjects overwhelmingly in what were called "unskilled" or "semi-skilled" forms of labor. Skilled work was largely, with certain variations, the preserve of "American" or old immigrant workers. This labor gulf separating new immigrants and American workers was hardened by a spatial separateness. New immigrants often lived in what have been called industrial villages—the mining town or location, the factory neighborhood— striking in their isolation and insularity from mainstream society. This separateness and insularity became a major preoccupation for corporate managers, Progressive reformers, and for American trade unions as new immigrants began to engage in major labor struggles leading up to 1914. But among the three industries, only the union of coal miners, the United Mine Workers, enjoyed success in organizing the new immigrants. In the steel mills and the iron mines, the unions were either rooted out or failed to gain a foothold at all. The explanation for these differences is to be found in the different forms of industrial development among the industries studied.