1 resultado para Intangible Assets
em Digital Commons - Michigan Tech
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (16)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (21)
- Chapman University Digital Commons - CA - USA (3)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (18)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (142)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (210)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (1)
- Institute of Public Health in Ireland, Ireland (4)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (70)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (23)
- Ministerio de Cultura, Spain (2)
- Open University Netherlands (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (9)
- QSpace: Queen's University - Canada (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (57)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (68)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (16)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (15)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (20)
- Universidade dos Açores - Portugal (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (4)
- Universidade Técnica de Lisboa (5)
- Université de Lausanne, Switzerland (24)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (15)
- WestminsterResearch - UK (1)
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.