2 resultados para Information theory in aesthetics
em Digital Commons - Michigan Tech
Resumo:
Students are now involved in a vastly different textual landscape than many English scholars, one that relies on the “reading” and interpretation of multiple channels of simultaneous information. As a response to these new kinds of literate practices, my dissertation adds to the growing body of research on multimodal literacies, narratology in new media, and rhetoric through an examination of the place of video games in English teaching and research. I describe in this dissertation a hybridized theoretical basis for incorporating video games in English classrooms. This framework for textual analysis includes elements from narrative theory in literary study, rhetorical theory, and literacy theory, and when combined to account for the multiple modalities and complexities of gaming, can provide new insights about those theories and practices across all kinds of media, whether in written texts, films, or video games. In creating this framework, I hope to encourage students to view texts from a meta-level perspective, encompassing textual construction, use, and interpretation. In order to foster meta-level learning in an English course, I use specific theoretical frameworks from the fields of literary studies, narratology, film theory, aural theory, reader-response criticism, game studies, and multiliteracies theory to analyze a particular video game: World of Goo. These theoretical frameworks inform pedagogical practices used in the classroom for textual analysis of multiple media. Examining a video game from these perspectives, I use analytical methods from each, including close reading, explication, textual analysis, and individual elements of multiliteracies theory and pedagogy. In undertaking an in-depth analysis of World of Goo, I demonstrate the possibilities for classroom instruction with a complex blend of theories and pedagogies in English courses. This blend of theories and practices is meant to foster literacy learning across media, helping students develop metaknowledge of their own literate practices in multiple modes. Finally, I outline a design for a multiliteracies course that would allow English scholars to use video games along with other texts to interrogate texts as systems of information. In doing so, students can hopefully view and transform systems in their own lives as audiences, citizens, and workers.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.