3 resultados para Information storage and retrieval systems -- Design
em Digital Commons - Michigan Tech
Resumo:
Information management is a key aspect of successful construction projects. Having inaccurate measurements and conflicting data can lead to costly mistakes, and vague quantities can ruin estimates and schedules. Building information modeling (BIM) augments a 3D model with a wide variety of information, which reduces many sources of error and can detect conflicts before they occur. Because new technology is often more complex, it can be difficult to effectively integrate it with existing business practices. In this paper, we will answer two questions: How can BIM add value to construction projects? and What lessons can be learned from other companies that use BIM or other similar technology? Previous research focused on the technology as if it were simply a tool, observing problems that occurred while integrating new technology into existing practices. Our research instead looks at the flow of information through a company and its network, seeing all the actors as part of an ecosystem. Building upon this idea, we proposed the metaphor of an information supply chain to illustrate how BIM can add value to a construction project. This paper then concludes with two case studies. The first case study illustrates a failure in the flow of information that could have prevented by using BIM. The second case study profiles a leading design firm that has used BIM products for many years and shows the real benefits of using this program.
Resumo:
High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.
Resumo:
Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.