6 resultados para Indoor air quality
em Digital Commons - Michigan Tech
Resumo:
The purpose of this project was to investigate student learning in the areas of earth science and environmental responsibility using the subject of coal fires. Eastern Kentucky, where this study was performed, has several coal fires burning that affect the local air quality and may also affect the health of people living near them. This study was conducted during the regular education of 9th grade Earth Science classroom in Russell Independent Schools, located in Russell, Kentucky. Students conducted internet research, read current articles on the subject of coal fire emissions and effect on local ecology, and demonstrated what they learned through summative assessments. There were several aspects of coalmines and coal fires that students studied. Students were able to take this knowledge and information and use it as a learning tool to gain a better understanding of their own environment. Using the local history and geology of coalmines, along with the long tradition of mine production, was a very beneficial starting point, allowing students to learn about environmental impact, stewardship of their local environment, and methods of preserving and protecting the ecosystem.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.
Resumo:
A considerable portion of public lands in the United States is at risk of uncharacteristically severe wildfires due to a history of fire suppression. Wildfires already have detrimental impacts on the landscape and on communities in the wildland-urban interface (WUI) due to unnatural and overstocked forests. Strategies to mitigate wildfire risk include mechanical thinning and prescribed burning in areas with high wildfire risk. The material removed is often of little or no economic value. Woody biomass utilization (WBU) could offset the costs of hazardous fuel treatments if removed material could be used for wood products, heat, or electricity production. However, barriers due to transportation costs, removal costs, and physical constraints (such as steep slopes) hinder woody biomass utilization. Various federal and state policies attempt to overcome these barriers. WBU has the potential to aid in wildfire mitigation and meet growing state mandates for renewable energy. This research utilizes interview data from individuals involved with on-the-ground woody biomass removal and utilization to determine how federal and state policies influence woody biomass utilization. Results suggest that there is not one over-arching policy that hinders or promotes woody biomass utilization, but rather woody biomass utilization is hindered by organizational constraints related to time, cost, and quality of land management agencies’ actions. However, the use of stewardship contracting (a hybrid timber sale and service contract) shows promise for increased WBU, especially in states with favorable tax policies and renewable energy mandates. Policy recommendations to promote WBU include renewal of stewardship contracting legislations and a re-evaluation of land cover types suited for WBU. Potential future policies to consider include the indirect role of carbon dioxide emission reduction activities to promote wood energy and future impacts of air quality regulations.
Resumo:
Indoor air pollution from combustion of solid fuels is the fifth leading contributor to disease burden in low-income countries. This, and potential to reduce environmental impacts, has resulted in emphasis on use of improved stoves. However, many efforts have failed to meet expectations and effective coverage remains limited. A disconnect exists between technologies, delivery methods, and long-term adoption. The purpose of this research is to develop a framework to increase long-term success of improved stove projects. The framework integrates sustainability factors into the project life-cycle. It is represented as a matrix and checklist which encourages consideration of social, economic, and environmental issues in projects. A case study was conducted in which an improved stove project in Honduras was evaluated using the framework. Results indicated areas of strength and weakness in project execution and highlighted potential improvements for future projects. The framework is also useful as a guide during project planning.
Resumo:
Carbon Monoxide (CO) and Ozone (O3) are considered to be one of the most important atmospheric pollutants in the troposphere with both having significant effects on human health. Both are included in the U.S. E.P.A list of criteria pollutants. CO is primarily emitted in the source region whereas O3 can be formed near the source, during transport of the pollution plumes containing O3 precursors or in a receptor region as the plumes subside. The long chemical lifetimes of both CO and O3 enable them to be transported over long distances. This transport is important on continental scales as well, commonly referred to as inter-continental transport and affects the concentrations of both CO and O3 in downwind receptor regions, thereby having significant implications for their air quality standards. Over the period 2001-2011, there have been decreases in the anthropogenic emissions of CO and NOx in North America and Europe whereas the emissions over Asia have increased. How these emission trends have affected concentrations at remote sites located downwind of these continents is an important question. The PICO-NARE observatory located on the Pico Mountain in Azores, Portugal is frequently impacted by North American pollution outflow (both anthropogenic and biomass burning) and is a unique site to investigate long range transport from North America. This study uses in-situ observations of CO and O3 for the period 2001-2011 at PICO-NARE coupled with output from the full chemistry (with normal and fixed anthropogenic emissions) and tagged CO simulations in GEOS-Chem, a global 3-D chemical transport model of atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office, to determine and interpret the trends in CO and O3 concentrations over the past decade. These trends would be useful in ascertaining the impacts emission reductions in the United States have had over Pico and in general over the North Atlantic. A regression model with sinusoidal functions and a linear trend term was fit to the in-situ observations and the GEOS-Chem output for CO and O3 at Pico respectively. The regression model yielded decreasing trends for CO and O3 with the observations (-0.314 ppbv/year & -0.208 ppbv/year respectively) and the full chemistry simulation with normal emissions (-0.343 ppbv/year & -0.526 ppbv/year respectively). Based on analysis of the results from the full chemistry simulation with fixed anthropogenic emissions and the tagged CO simulation it was concluded that the decreasing trends in CO were a consequence of the anthropogenic emission changes in regions such as USA and Asia. The emission reductions in USA are countered by Asian increases but the former have a greater impact resulting in decreasing trends for CO at PICO-NARE. For O3 however, it is the increase in water vapor content (which increases O3 destruction) along the pathways of transport from North America to PICO-NARE as well as around the site that has resulted in decreasing trends over this period. This decrease is offset by increase in O3 concentrations due to anthropogenic influence which could be due to increasing Asian emissions of O3 precursors as these emissions have decreased over the US. However, the anthropogenic influence does not change the final direction of the trend. It can thus be concluded that CO and O3 concentrations at PICO-NARE have decreased over 2001-2011.