3 resultados para ITS applications

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming issue becomes more significant to human beings and other organisms on the earth. Among many greenhouse gases, carbon dioxide (CO2) has the largest contribution to global warming. To find an effective way to utilize the greenhouse gas is urgent. It is the best way to convert CO2 to useful compounds. CO2 reforming of methane is an attractive process to convert CO2 and methane into synthesis gas (CO/H2), which can be used as a feedstock for gasoline, methanol, and other hydrocarbons. Nickel and cobalt were found to have good activity for CO2 reforming. However, they have a poor stability due to carbon deposition. This research developed efficient Ni-Co solid solution catalysts with excellent activities and high stability for CO2 reforming of methane. First, the structure of binary oxide solid solution of nickel and cobalt was investigated. It was found that while the calcination of Ni(NO3)2 and Co(NO3)2 mixture with 1:1 molar ratio at a high temperature above 800 oC generated NiO-CoO solid solution, only Ni3O4-Co3O4 solid solution was observed after the calcination at a low temperature of 500 oC. Furthermore, if the calcination was carried out at a medium temperature arranged from 600 to 700 oC, both NiO-CoO and Ni3O4-Co3O4 solid solutions can be formed. This occurred because Co3O4 can induce the formation of Ni3O4, whereas NiO can stabilize CoO. In addition, the lattice parameter of Ni3O4, which was predicted by using Vegard’s Law, is 8.2054 Å. As a very important part of this dissertation, Ni-Co solid solution was evaluated as catalysts for CO2 reforming of methane. It was revealed that nickel-cobalt solid solution showed excellent catalytic performance and high stability for CO2 reforming of methane. However, the stability of Ni-Co solid solution catalysts is strongly dependent on their composition and preparation condition. The optimum composition is 50%Ni-50%Co. Furthermore, the structure of Ni-Co catalysts was characterized by XRD, Vvis, TPR, TPD, BET, AES, TEM, XANES and EXAFS. The relationship between the structure and the catalytic performance was established: (1) The reduced NiO-CoO solid solution possesses better catalytic performance and stability than the reduced Ni3O4-Co3O4 solid solution. (2) Ni is richer on surface in Ni-Co catalysts. And (3) the reduction of Ni-Co-O solid solution generated two types of particles, small and large particles. The small ones are dispersed on large ones as catalytic component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, I study skin lesion detection and its applications to skin cancer diagnosis. A skin lesion detection algorithm is proposed. The proposed algorithm is based color information and threshold. For the proposed algorithm, several color spaces are studied and the detection results are compared. Experimental results show that YUV color space can achieve the best performance. Besides, I develop a distance histogram based threshold selection method and the method is proven to be better than other adaptive threshold selection methods for color detection. Besides the detection algorithms, I also investigate GPU speed-up techniques for skin lesion extraction and the results show that GPU has potential applications in speeding-up skin lesion extraction. Based on the skin lesion detection algorithms proposed, I developed a mobile-based skin cancer diagnosis application. In this application, the user with an iPhone installed with the proposed application can use the iPhone as a diagnosis tool to find the potential skin lesions in a persons' skin and compare the skin lesions detected by the iPhone with the skin lesions stored in a database in a remote server.