6 resultados para IT-supported field data management
em Digital Commons - Michigan Tech
Resumo:
Small-scale village woodlots of less than 0.5ha are the preferred use of land for local farmers with extra land in the village of Isangati, a small community located in the southern highlands of Tanzania. Farmers view woodlots as lucrative investments that do not involve intensive labor or time. The climate is ideal for the types of trees grown and the risks are minimal with no serious threats from insects, fires, thieves, or grazing livestock. It was hypothesized that small-scale village woodlot owners were not maximizing timber outputs with their current timber stand management and harvesting techniques. Personal interviews were conducted over a five month period and field data was collected at each farmer’s woodlots over a seven month period. Woodlot field data included woodlot size, number of trees, tree species, tree height, dbh, age, and spacing. The results indicated that the lack of proper woodlot management techniques results in failure to fully capitalize on the investment of woodlots. While farmers should continue with their current harvesting rotations, some of the reasons for not maximizing tree growth include close spacing (2m x 2m), no tree thinning, extreme pruning (60% of tree), and little to no weeding. Through education and hands-on woodlot management workshops, the farmers could increase their timber output and value of woodlots.
Resumo:
In 2005, Wetland Studies and Solutions, Inc. (WSSI) installed an extensive Low Impact Development (LID) stormwater management system on their new office site in Gainesville, Virginia. The 4-acre site is serviced by a network of LID components: permeable pavements (two proprietary and one gravel type), bioretention cell / rain garden, green roof, vegetated swale, rainwater harvesting and drip irrigation, and slow-release underground detention. The site consists of heavy clay soils, and the LID components are mostly integrated by a series of underdrain pipes. A comprehensive monitoring system has been designed and installed to measure hydrologic performance throughout the LID, underdrained network. The monitoring system measures flows into and out of each LID component independently while concurrently monitoring rainfall events. A sensitivity analysis and laboratory calibration has been performed on the flow measurement system. Field data has been evaluated to determine the hydrologic performance of the LID features. Finally, hydrologic models amenable to compact, underdrained LID sites have been reviewed and recommended for future modeling and design.
Resumo:
In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.
Resumo:
Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
High resolution digital elevation models (DEMs) of Santiaguito and Pacaya volcanoes, Guatemala, were used to estimate volume changes and eruption rates between 1954 and 2001. The DEMs were generated from contour maps and aerial photography, which were analyzed in ArcGIS 9.0®. Because both volcanoes were growing substantially over the five decade period, they provide a good data set for exploring effective methodology for estimating volume changes. The analysis shows that the Santiaguito dome complex grew by 0.78 ± 0.07 km3 (0.52 ± 0.05 m3 s-1) over the 1954-2001 period with nearly all the growth occurring on the El Brujo (1958-75) and Caliente domes (1971-2001). Adding information from field data prior to 1954, the total volume extruded from Santiaguito since 1922 is estimated at 1.48 ± 0.19 km3. Santiaguito’s growth rate is lower than most other volcanic domes, but it has been sustained over a much longer period and has undergone a change toward more exogenous and progressively slower extrusion with time. At Santiaguito some of the material being added at the dome is subsequently transported downstream by block and ash flows, mudflows and floods, creating channel shifting and areas of aggradation and erosion. At Pacaya volcano a total volume of 0.21 ± 0.05 km3 was erupted between 1961 and 2001 for an average extrusion rate of 0.17 ± 0.04 m3 s-1. Both the Santiaguito and Pacaya eruption rate estimates reported here are minima, because they do not include estimates of materials which are transported downslope after eruption and data on ashfall which may result in significant volumes of material spread over broad areas. Regular analysis of high resolution DEMs using the methods outlined here, would help quantify the effects of fluvial changes to downstream populated areas, as well as assist in tracking hazards related to dome collapse and eruption.