3 resultados para INVERTED PENDULUM
em Digital Commons - Michigan Tech
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.
Resumo:
The purpose of this study is to explore a Kalman Filter approach to estimating swing of crane-suspended loads. Measuring real-time swing is needed to implement swing damping control strategies where crane joints are used to remove energy from a swinging load. The typical solution to measuring swing uses an inertial sensor attached to the hook block. Measured hook block twist is used to resolve the other two sensed body rates into tangential and radial swing. Uncertainty in the twist measurement leads to inaccurate tangential and radial swing calculations and ineffective swing damping. A typical mitigation approach is to bandpass the inertial sensor readings to remove low frequency drift and high frequency noise. The center frequency of the bandpass filter is usually designed to track the load length and the pass band width set to trade off performance with damping loop gain. The Kalman Filter approach developed here allows all swing motions (radial, tangential and twist) to be measured without the use of a bandpass filter. This provides an alternate solution for swing damping control implementation. After developing a Kalman Filter solution for a two-dimensional swing scenario, the three-dimensional system is considered where simplifying assumptions, suggested by the two-dimensional study, are exploited. One of the interesting aspects of the three-dimensional study is the hook block twist model. Unlike the mass-independence of a pendulum's natural frequency, the twist natural frequency depends both on the pendulum length and the load’s mass distribution. The linear Kalman Filter is applied to experimental data demonstrating the ability to extract the individual swing components for complex motions. It should be noted that the three-dimensional simplifying assumptions preclude the ability to measure two "secondary" hook block rotations. The ability to segregate these motions from the primary swing degrees of freedom was illustrated in the two-dimensional study and could be included into the three-dimensional solution if they were found to be important for a particular application.