2 resultados para Hyperbranched Polymers, Liquid Crystals

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful detection of aqueous ammonia and methanol has been achieved with Polypyrrole deposited magneto-photonic crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results