7 resultados para Hazard Mitigation

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Volcanoes pose a threat to the human population at regional and global scales and so efficient monitoring is essential in order to effectively manage and mitigate the risks that they pose. Volcano monitoring from space has been possible for over thirty years and now, more than ever, a suite of instruments exists with the capability to observe emissions of gas and ash from a unique perspective. The goal of this research is to demonstrate the use of a range of satellite-based sensors in order to detect and quantify volcanic sulphur dioxide, and to assess the relative performances of each sensor against one another. Such comparisons are important in order to standardise retrievals and permit better estimations of the global contribution of sulphur dioxide to the atmosphere from volcanoes for climate modelling. In this work, retrievals of volcanic sulphur dioxide from a number of instruments are compared, and the individual performances at quantifying emissions from large, explosive volcanic eruptions are assessed. Retrievals vary widely from sensor to sensor, and often the use of a number of sensors in synergy can provide the most complete picture, rather than just one instrument alone. Volcanic emissions have the ability to result significant economic loses by grounding aircraft due to the high risk associated with ash encountering aircraft. As sulphur dioxide is often easier to measure than ash, it is often used as a proxy. This work examines whether this is a reasonable assumption, using the Icelandic eruption in early 2010 as a case study. Results indicate that although the two species are for the most part collocated, separation can occur under some conditions, meaning that it is essential to accurately measure both species in order to provide effective hazard mitigation. Finally, the usefulness of satellite remote sensing in quantifying the passive degassing from Turrialba, Costa Rica is demonstrated. The increase in activity from 2005 – 2010 can be observed in satellite data prior to the phreatic phase of early 2010, and can therefore potentially provide a useful indication of changing activity at some volcanoes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.