4 resultados para Harmonic Components
em Digital Commons - Michigan Tech
Resumo:
The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.
Resumo:
We observed Santiaguito volcano in southwestern Guatemala from March 2008 - March 2010. Seismic and infrasound data collected between January and March of 2009 contain records of many diverse processes occurring at the dacitic dome complex, including the recurrence of short lived (30-200 seconds in duration) harmonic tremor concurrent with ash poor gas emissions from the volcano. We employ several different analytical techniques to examine different portions of the tremor and source mechanisms. We use the parameters derived by this analysis to compare the feasibility of several suggested models of eruption mechanisms, and determine that this type of harmonic tremor is most justifiably generated by the flow of gas through crack networks generated by shear fracture along the magma conduit margin.
Resumo:
This report is a PhD dissertation proposal to study the in-cylinder temperature and heat flux distributions within a gasoline turbocharged direct injection (GTDI) engine. Recent regulations requiring automotive manufacturers to increase the fuel efficiency of their vehicles has led to great technological achievements in internal combustion engines. These achievements have increased the power density of gasoline engines dramatically in the last two decades. Engine technologies such as variable valve timing (VVT), direct injection (DI), and turbocharging have significantly improved engine power-to-weight and power-to-displacement ratios. A popular trend for increasing vehicle fuel economy in recent years has been to downsize the engine and add VVT, DI, and turbocharging technologies so that a lighter more efficient engine can replace a larger, heavier one. With the added power density, thermal management of the engine becomes a more important issue. Engine components are being pushed to their temperature limits. Therefore it has become increasingly important to have a greater understanding of the parameters that affect in-cylinder temperatures and heat transfer. The proposed research will analyze the effects of engine speed, load, relative air-fuel ratio (AFR), and exhaust gas recirculation (EGR) on both in-cylinder and global temperature and heat transfer distributions. Additionally, the effect of knocking combustion and fuel spray impingement will be investigated. The proposed research will be conducted on a 3.5 L six cylinder GTDI engine. The research engine will be instrumented with a large number of sensors to measure in-cylinder temperatures and pressures, as well as, the temperature, pressure, and flow rates of energy streams into and out of the engine. One of the goals of this research is to create a model that will predict the energy distribution to the crankshaft, exhaust, and cooling system based on normalized values for engine speed, load, AFR, and EGR. The results could be used to aid in the engine design phase for turbocharger and cooling system sizing. Additionally, the data collected can be used for validation of engine simulation models, since in-cylinder temperature and heat flux data is not readily available in the literature..
Resumo:
The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.