5 resultados para Habitat Use
em Digital Commons - Michigan Tech
Resumo:
Habitat selection has been one of the main research topics in ecology for decades. Nevertheless, many aspects of habitat selection still need to be explored. In particular, previous studies have overlooked the importance of temporal variation in habitat selection and the value of including data on reproductive success in order to describe the best quality habitat for a species. We used data collected from radiocollared wolves in Yellowstone National Park (USA), between 1996 and 2008, to describe wolf habitat selection. In particular, we aimed to identify i) seasonal differences in wolf habitat selection, ii) factors influencing interannual variation in habitat selection, and iii) the effect of habitat selection on wolf reproductive success. We used probability density functions to describe wolf habitat use and habitat coverages to represent the habitat available to wolves. We used regression analysis to connect habitat use with habitat characteristics and habitat selection with reproductive success. Our most relevant result was discovering strong interannual variability in wolf habitat selection. This variability was in part explained by pack identity and differences in litter size and leadership of a pack between two years (summer) and in pack size and precipitation (winter). We also detected some seasonal differences. Wolves selected open habitats, intermediate elevations, intermediate distances from roads, and avoided steep slopes in late winter. They selected areas close to roads and avoided steep slopes in summer. In early winter, wolves selected wetlands, herbaceous and shrub vegetation types, and areas at intermediate elevation and distance from roads. Surprisingly, the habitat characteristics selected by wolves were not useful in predicting reproductive success. We hypothesize that interannual variability in wolf habitat selection may be too strong to detect effects on reproductive success. Moreover, prey availability and competitor pressure may also have an influence on wolf reproductive success, which we did not assess. This project demonstrated how important temporal variation is in shaping patterns of habitat selection. We still believe in the value of running long-term studies, but the effect of temporal variation should always be taken into account.
Resumo:
Ungulates are important components of a variety of ecosystems worldwide. This dissertation integrates aspects of ungulate and forest ecology to increase our understanding of how they work together in ways that are of interest to natural resource managers, educators, and those who are simply curious about nature. Although animal ecology and ecosystem ecology are often studied separately, one of the general goals of this dissertation is to examine how they interact across spatial and temporal scales. Forest ecosystems are heterogeneous across a range of scales. Spatial and temporal habitat use patterns of forest ungulates tend to be congregated in patches where food and/or cover are readily available. Ungulates interact with ecosystem processes by selectively foraging on plants and excreting waste products in concentrated patches. Positive feedbacks may develop where these activities increase the value of habitat through soil fertilization or the alteration of plant chemistry and architecture. Heterogeneity in ecosystem processes and plant community structure, observed at both stand and local scales, may be the integrated outcome of feedbacks between ungulate behavior and abiotic resource gradients. The first chapter of this dissertation briefly discusses pertinent background information on ungulate ecology, with a focus on white-tailed deer (Odocoileus virginianus) in the Upper Great Lakes region and moose (Alces acles) in Isle Royale National Park, Michigan, USA. The second chapter demonstrates why ecological context is important for studying ungulate ecology in forest ecosystems. Excluding deer from eastern hemlock (Tsuga canadensis) stands, which deer use primarily as winter cover, resulted in less spatial complexity in soil reactive nitrogen and greater complexity in diffuse light compared to unfenced stands. The spatial patterning of herbaceous-layer cover was more similar to nitrogen where deer were present, and was a combination of nitrogen and light within deer exclosures. This relationship depends on the seasonal timing of deer habitat use because deer fertilize the soil during winter, but leave during the growing season. The third chapter draws upon an eight-year, 39-stand data set of deer fecal pellet counts in hemlock stands to estimate the amount of nitrogen that deer are depositing in hemlock stands each winter. In stands of high winter deer use, deer-excreted nitrogen inputs consistently exceeded those of atmospheric deposition at the stand scale. At the neighborhood scale, deer-excreted nitrogen was often in excess of atmospheric deposition due to the patchy distribution of deer habitat use. Spatial patterns in habitat use were consistent over the eight-year study at both stand and neighborhood scales. The fourth chapter explores how foraging selectivity by moose interacts with an abiotic resource gradient to influence forest structure and composition. Soil depth on Isle Royale varies from east to west according to glacial history. Fir saplings growing in deeper soils on the west side are generally more palatable forage for moose (lower foliar C:N) than those growing in shallower soils on the east side. Therefore, saplings growing in better conditions are less likely to reach the canopy due to moose browsing, and fir is a smaller overstory component on the west side. Lastly, chapter five focuses on issues surrounding eastern hemlock regeneration failure, which is a habitat type that is important to many wildlife species. Increasing hemlock on the landscape is complicated by several factors including disturbance regime and climate change, in addition to the influence of deer.
Resumo:
Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.
Resumo:
Streams and riparian areas can be intricately connected via physical and biotic interactions that influence habitat conditions and supply resource subsidies between these ecosystems. Streambed characteristics such as the size of substrate particles influence the composition and the abundance of emergent aquatic insects, which can be an important resource for riparian breeding birds. We predict fine sediment abundance in small headwater streams directly affects the composition and number of emergent insects while it may indirectly affect riparian bird assemblages. Streams with abundant fine sediments that embed larger substrates should have lower emergence of large insects such as phemeroptera, Plecoptera and Trichoptera. Streams with lower emergent insect abundance are predicted to support fewer breeding birds and may lack certain bird species that specialize on aquatic insects. This study examined relationships between streambed characteristics, and emergent insects (composition, abundance and biomass), and riparian breeding birds (abundance and richness) along headwater streams of the Otter River Watershed. The stream bed habitats of seven stream reaches were characterized using longitudinal surveys. Malaise traps were deployed to sample emergent aquatic insects. Riparian breeding birds were surveyed using fixed-radius point-counts. Streams differed within a wide range of fine sediment abundances. Total emergent aquatic insect abundance increased as coverage by instream substrates increased in diameter, while bird community was unresponsive to insect or stream features. Knowledge of stream and riparian relationships is important for understanding of food webs in these ecosystems, and it is useful for riparian forest conservation and improving land-use management to reduce sediment pollution in these systems.
Resumo:
The federally endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) persists in rare oak/pine grassland communities spanning across the Great Lakes region, relying on host plant wild blue lupine (Lupinus perennis). Conservation efforts since 1992 have led to the development of several programs that restore and monitor habitat. This study aims to evaluate Karner blue habitat selection in the state of Wisconsin and develop high-resolution tools for use in conservation efforts. Spatial predictive models developed during this study accurately predicted potential habitat across state properties based on soils and canopy cover, and identified ~51-100% of Karner blue occurrences based on lupine and shrub/tree cover, and focal nectar plant abundance. When evaluated relative to American bison (Bison bison), Karner blues and lupine were more likely to occur in areas of low disturbance, but aggregated where bison were recently present in areas of moderate/high disturbance. Lupine C:N ratio increased relative to cover of shrubs/trees and focal nectar plant abundance and decreased relative to cover of groundlitter. Karner blue density increased with lupine C:N ratio, decreased with nitrogen content, and was not related to phenolic levels. We strongly suggest that areas of different soil textures must be managed differently and that maintenance techniques should generate a mix of shrubs/tree cover (10-45%), groundlitter cover (~10-40%), >5% cover of lupine, and establish an abundance of focal nectar plants. This study provides unique tools for use in conservation and should aid in focusing management efforts and recovery of this species.