2 resultados para HOMOGENEOUS SAMPLE

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional flood frequency techniques are commonly used to estimate flood quantiles when flood data is unavailable or the record length at an individual gauging station is insufficient for reliable analyses. These methods compensate for limited or unavailable data by pooling data from nearby gauged sites. This requires the delineation of hydrologically homogeneous regions in which the flood regime is sufficiently similar to allow the spatial transfer of information. It is generally accepted that hydrologic similarity results from similar physiographic characteristics, and thus these characteristics can be used to delineate regions and classify ungauged sites. However, as currently practiced, the delineation is highly subjective and dependent on the similarity measures and classification techniques employed. A standardized procedure for delineation of hydrologically homogeneous regions is presented herein. Key aspects are a new statistical metric to identify physically discordant sites, and the identification of an appropriate set of physically based measures of extreme hydrological similarity. A combination of multivariate statistical techniques applied to multiple flood statistics and basin characteristics for gauging stations in the Southeastern U.S. revealed that basin slope, elevation, and soil drainage largely determine the extreme hydrological behavior of a watershed. Use of these characteristics as similarity measures in the standardized approach for region delineation yields regions which are more homogeneous and more efficient for quantile estimation at ungauged sites than those delineated using alternative physically-based procedures typically employed in practice. The proposed methods and key physical characteristics are also shown to be efficient for region delineation and quantile development in alternative areas composed of watersheds with statistically different physical composition. In addition, the use of aggregated values of key watershed characteristics was found to be sufficient for the regionalization of flood data; the added time and computational effort required to derive spatially distributed watershed variables does not increase the accuracy of quantile estimators for ungauged sites. This dissertation also presents a methodology by which flood quantile estimates in Haiti can be derived using relationships developed for data rich regions of the U.S. As currently practiced, regional flood frequency techniques can only be applied within the predefined area used for model development. However, results presented herein demonstrate that the regional flood distribution can successfully be extrapolated to areas of similar physical composition located beyond the extent of that used for model development provided differences in precipitation are accounted for and the site in question can be appropriately classified within a delineated region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid nanocomposites are widely studied and applied in broad areas because of their ability to combine the flexibility, low density of the organic materials with the hardness, strength, thermal stability, good optical and electronic properties of the inorganic materials. Polydimethylsiloxane (PDMS) due to its excellent elasticity, transparency, and biocompatibility has been extensively employed as the organic host matrix for nanocomposites. For the inorganic component, titanium dioxide and barium titanate are broadly explored as they possess outstanding physical, optical and electronic properties. In our experiment, PDMS-TiO2 and PDMS-BaTiO3 hybrid nanocomposites were fabricated based on in-situ sol-gel technique. By changing the amount of metal precursors, transparent and homogeneous PDMS-TiO2 and PDMS-BaTiO3 hybrid films with various compositions were obtained. Two structural models of these two types of hybrids were stated and verified by the results of characterization. The structures of the hybrid films were examined by a conjunction of FTIR and FTRaman. The morphologies of the cross-sectional areas of the films were characterized by FESEM. An Ellipsometer and an automatic capacitance meter were utilized to evaluate the refractive index and dielectric constant of these composites respectively. A simultaneous DSC/TGA instrument was applied to measure the thermal properties. For PDMS-TiO2 hybrids, the higher the ratio of titanium precursor added, the higher the refractive index and the dielectric constant of the composites are. The highest values achieved of refractive index and dielectric constant were 1.74 and 15.5 respectively for sample PDMS-TiO2 (1-6). However, when the ratio of titanium precursor to PDMS was as high as 20 to 1, phase separation occurred as evidenced by SEM images, refractive index and dielectric constant decreased. For PDMS-BaTiO3 hybrids, with the increase of barium and titanium precursors in the system, the refractive index and dielectric constant of the composites increased. The highest value was attained in sample PDMS-BaTiO3 (1-6) with a refractive index of 1.6 and a dielectric constant of 12.2. However, phase separation appeared in SEM images for sample PDMS-BaTiO3 (1-8), the refractive index and dielectric constant reduced to lower values. Different compositions of PDMS-TiO2 and PDMS-BaTiO3 hybrid films were annealed at 60 °C and 100 °C, the influences on the refractive index, dielectric constant, and thermal properties were investigated.