2 resultados para HOMO-LUMO energies
em Digital Commons - Michigan Tech
Resumo:
Graphene is one of the most important materials. In this research, the structures and properties of graphene nano disks (GND) with a concentric shape were investigated by Density Functional Theory (DFT) calculations, in which the most effective DFT methods - B3lyp and Pw91pw91 were employed. It was found that there are two types of edges - Zigzag and Armchair in concentric graphene nano disks (GND). The bond length between armchair-edge carbons is much shorter than that between zigzag-edge carbons. For C24 GND that consists of 24 carbon atoms, only armchair edge with 12 atoms is formed. For a GND larger than the C24 GND, both armchair and zigzag edges co-exist. Furthermore, when the number of carbon atoms in armchair-edge are always 12, the number of zigzag-edge atoms increases with increasing the size of a GND. In addition, the stability of a GND is enhanced with increasing its size, because the ratio of edge-atoms to non-edge-atoms decreases. The size effect of a graphene nano disk on its HOMO-LUMO energy gap was evaluated. C6 and C24 GNDs possess HOMO-LUMO gaps of 1.7 and 2.1eV, respectively, indicating that they are semi-conductors. In contrast, C54 and C96 GNDs are organic metals, because their HOMO-LUMO gaps are as low as 0.3 eV. The effect of doping foreign atoms to the edges of GNDs on their structures, stabilities, and HOMO-LUMO energy gaps were also examined. When foreign atoms are attached to the edge of a GND, the original unsaturated carbon atoms become saturated. As a result, both of the C-C bonds lengths and the stability of a GND increase. Furthermore, the doping effect on the HOMO-LUMO energy gap is dependent on the type of doped atoms. The doping H, F, or OH into the edge of a GND increases its HOMO-LUMO energy gap. In contrast, a Li-doped GND has a lower HOMO-LUMO energy gap than that without doping. Therefore, Li-doping can increase the electrical conductance of a GND, whereas H, F, or OH-doping decreases its conductance.
Resumo:
Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.